A031972 a(n) = Sum_{k=1..n} n^k.
0, 1, 6, 39, 340, 3905, 55986, 960799, 19173960, 435848049, 11111111110, 313842837671, 9726655034460, 328114698808273, 11966776581370170, 469172025408063615, 19676527011956855056, 878942778254232811937, 41660902667961039785742, 2088331858752553232964199
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
Programs
-
Haskell
a031972 n = sum $ take n $ iterate (* n) n -- Reinhard Zumkeller, Nov 22 2014
-
Magma
[1] cat [(n^(n+1)-n)/(n-1): n in [2..20]]; // Vincenzo Librandi, Apr 16 2015
-
Maple
a:= n-> `if`(n<2, n, (n^(n+1)-n)/(n-1)): seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Mathematica
f[n_]:=Sum[n^k,{k,n}];Array[f,30] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
Formula
a(1)=1; for n!=1 a(n) = (n^(n+1)-1)/(n-1) - 1. - Benoit Cloitre, Aug 17 2002
a(n) = A031973(n)-1 for n>0. - Robert G. Wilson v, Apr 15 2015
Extensions
a(0)=0 prepended by Alois P. Heinz, Oct 22 2019
Comments