A228275 A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 14, 12, 4, 0, 0, 5, 30, 39, 20, 5, 0, 0, 6, 62, 120, 84, 30, 6, 0, 0, 7, 126, 363, 340, 155, 42, 7, 0, 0, 8, 254, 1092, 1364, 780, 258, 56, 8, 0, 0, 9, 510, 3279, 5460, 3905, 1554, 399, 72, 9, 0
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 2, 6, 14, 30, 62, 126, 254, ... 0, 3, 12, 39, 120, 363, 1092, 3279, ... 0, 4, 20, 84, 340, 1364, 5460, 21844, ... 0, 5, 30, 155, 780, 3905, 19530, 97655, ... 0, 6, 42, 258, 1554, 9330, 55986, 335922, ... 0, 7, 56, 399, 2800, 19607, 137256, 960799, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Columns k=0-10 give: A000004, A001477, A002378, A027444, A027445, A152031, A228290, A228291, A228292, A228293, A228294.
Rows n=0-11 give: A000004, A001477, A000918(k+1), A029858(k+1), A080674, A104891, A105281, A104896, A052379(k-1), A052386, A105279, A105280.
Main diagonal gives A031972.
Lower diagonal gives A226238.
Cf. A228250.
Programs
-
Maple
A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
Formula
A(1,k) = k, else A(n,k) = n/(n-1)*(n^k-1).
A(n,k) = Sum_{i=1..k} n^i.
A(n,k) = Sum_{i=1..k+1} binomial(k+1,i)*A(n-i,k)*(-1)^(i+1) for n>k, given values A(0,k), A(1,k),..., A(k,k). - Yosu Yurramendi, Sep 03 2013
Comments