A032033 Stirling transform of A032031.
1, 3, 21, 219, 3045, 52923, 1103781, 26857659, 746870565, 23365498683, 812198635941, 31055758599099, 1295419975298085, 58538439796931643, 2848763394161128101, 148537065755389540539, 8261178848690959117605, 488177936257344615487803, 30544839926043868901604261
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, J. Phys. A.: Math. Gen 36 (2003) L273.
- Christian G. Bower, Transforms (2)
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 3^m*m!, m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Mathematica
a[n_] := PolyLog[-n, 3/4]/4; a[0] = 1; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 14 2011 *) t = 30; Range[0, t]! CoefficientList[Series[1/(4 - 3 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
-
PARI
a(n)=ceil(polylog(-n,3/4)/4) \\ Charles R Greathouse IV, Jul 14 2014
-
PARI
my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(4 - 3*exp(x)))) \\ Joerg Arndt, Jan 15 2024
Formula
E.g.f.: 1/(4-3*exp(x)).
a(n) = 3 * A050352(n), n > 0.
a(n) = Sum_{k=0..n} Stirling2(n, k) * (3^k) * k!.
a(n) = (1/4) * Sum_{k>=0} k^n * (3/4)^k. - Karol A. Penson, Jan 25 2002
a(n) = Sum_{k=0..n} A131689(n,k)*3^k. - Philippe Deléham, Nov 03 2008
G.f. A(x)=B(x)/x, where B(x)=x+3*x^2+21*x^3+... = Sum_{n>=1} b(n)*x^n satisfies 4*B(x)-x = 3*B(x/(1-x)), and b(n)=3*Sum_{k=1..n-1} binomial(n-1,k-1)*b(k), b(1)=1. - Vladimir Kruchinin, Jan 27 2011
a(n) = log(4/3)*Integral_{x = 0..inf} (floor(x))^n * (4/3)^(-x) dx. - Peter Bala, Feb 14 2015
a(0) = 1; a(n) = 3 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 3 * a(n-1) - 4 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
a(n) = (3/4) * Sum_{k=0..n} 4^k * (-1)^(n-k) * k! * Stirling2(n,k) for n > 0. - Seiichi Manyama, Jun 01 2025
Comments