cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A032534 Quotient of 'base-2' division described in A032533.

Original entry on oeis.org

1, 5, 25, 125, 101, 625, 505, 481, 3125, 2525, 2405, 15625, 12625, 12025, 11001, 78125, 63125, 60125, 55005, 390625, 366337, 315625, 300625, 275025, 1953125, 1831685, 1578125, 1503125, 1375125, 1111101, 9765625, 9158425, 7890625
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[Mod[#2, #1] == 0, #2/#1, Nothing] & @@ {#, FromDigits[IntegerDigits[#, 2]]} &, 10^3] (* Michael De Vlieger, Oct 06 2019 *)

Extensions

Offset 1 from Michael De Vlieger, Oct 06 2019

A032532 Integer part of decimal 'base-2 looking' numbers divided by their actual base-2 values (denominator of a(n) is n, numerator is n written in binary but read in decimal).

Original entry on oeis.org

1, 5, 3, 25, 20, 18, 15, 125, 111, 101, 91, 91, 84, 79, 74, 625, 588, 556, 526, 505, 481, 459, 439, 458, 440, 423, 407, 396, 382, 370, 358, 3125, 3030, 2941, 2857, 2780, 2705, 2634, 2566, 2525, 2463, 2405, 2349, 2297, 2246, 2198, 2151, 2291
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Examples

			1_2 / 1_10 = 1/1 = 1;
10_2 / 2_10 = 10/2 = 5;
11_2 / 3_10 = 11/3 = 3.666666666...;
100_2 / 4_10 = 100/4 = 25;
101_2 / 5_10 = 101/5 = 20.2.
		

Crossrefs

Programs

  • Mathematica
    Array[Floor[FromDigits[IntegerDigits[#, 2]]/#] &, 48] (* Michael De Vlieger, Oct 06 2019 *)

Formula

a(n) = floor(A007088(n)/n).

A062845 When expressed in base 2 and then interpreted in base 3, is a multiple of the original number.

Original entry on oeis.org

0, 1, 5, 6, 10, 12, 30, 36, 60, 120, 180, 215, 216, 252, 360, 430, 432, 1080, 2730, 3276, 13710, 14724, 16380, 20520, 24624, 24840, 27125, 27420, 32760, 38880, 48606, 49091, 54250, 54840, 97212, 98280
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

The numbers 2*m, 4*m and 8*m are also terms of the sequence for m=a(122). - Dimiter Skordev, Mar 29 2020

Examples

			30 = 11110_2; 11110_3 = 120 = 4*30.
		

Crossrefs

Programs

  • Magma
    [0] cat [k:k in [1..100000]|Seqint(Intseq(Seqint(Intseq(k, 2))),3) mod k eq 0]; // Marius A. Burtea, Dec 29 2019
    
  • Mathematica
    {0} ~Join~ Select[Range[10^5], Mod[ FromDigits[ IntegerDigits[#, 2], 3], #] == 0 &] (* Giovanni Resta, Dec 10 2019 *)
  • PARI
    isok(m) = (m==0) || fromdigits(digits(m, 2), 3) % m == 0; \\ Michel Marcus, Feb 15 2020
    
  • Python
    def BaseUp(n,b):
        up, b1 = 0, 1
        while n > 0:
            up, b1, n = up+(n%b)*b1, b1*(b+1), n//b
        return up
    n, k = 1, 0
    print(1,0)
    while n < 35:
        n, k = n+1, k+1
        while BaseUp(k,2)%k != 0:
            k = k+1
        print(n,k) # A.H.M. Smeets, Mar 31 2020

A062847 When expressed in base 2 and then interpreted in base 6, is a multiple of the original number.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 66, 72, 96, 128, 132, 144, 174, 186, 192, 216, 252, 256, 264, 288, 348, 372, 384, 396, 432, 462, 504, 512, 528, 576, 696, 744, 768, 792, 864, 924, 1008, 1024, 1056, 1152, 1296, 1392, 1488, 1512, 1536, 1584, 1728
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

There are only five odd terms of the sequence that are less than 10^7, namely 1, 12025, 233285, 863395 and 9545429. - Dimiter Skordev, Feb 02 2020

Examples

			12 in base 2 is 1100, which interpreted in base 6 is 252=21*12.
		

Crossrefs

Cf. (with base 2 and b): A062845 (b=3), A062846 (b=4), A331841 (b=5), A062848 (b=7), A062849 (b=8), A062850 (b=9), A032533 (b=10).

Programs

  • Magma
    [0] cat [k:k in [1..1750]|Seqint(Intseq(Seqint(Intseq(k, 2))), 6) mod k eq 0]; // Marius A. Burtea, Feb 02 2020
  • PARI
    isok(n) = (n==0) || ((fromdigits(digits(n, 2), 6) % n) == 0); \\ Michel Marcus, Feb 01 2020
    

A331841 When expressed in base 2 and then interpreted in base 5, is a multiple of the original number.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 18, 21, 27, 30, 54, 57, 60, 63, 89, 90, 108, 114, 126, 130, 178, 180, 189, 228, 300, 356, 378, 390, 630, 712, 780, 900, 1170, 1299, 1300, 1890, 1953, 2340, 2370, 2730, 3510, 3900, 3906, 4740, 7020, 7110, 7410, 7800, 8100, 8190, 9261, 11700
Offset: 1

Views

Author

Dimiter Skordev, Jan 29 2020

Keywords

Examples

			30 = 11110_2; 11110_5 = 780 = 26*30.
		

Crossrefs

Cf. (with base 2 and b): A062845 (b=3), A062846 (b=4), A062847 (b=6), A062848 (b=7), A062849 (b=8), A062850 (b=9), A032533 (b=10).

Programs

  • Magma
    [0] cat [k:k in [1..12000]|Seqint(Intseq(Seqint(Intseq(k, 2))), 5) mod k eq 0]; // Marius A. Burtea, Jan 29 2020
  • Mathematica
    Prepend[Select[Range[12000], Divisible[FromDigits[IntegerDigits[#, 2], 5], #] &], 0] (* Amiram Eldar, Jan 29 2020 *)
  • PARI
    isok(n) = (n == 0) || (fromdigits(digits(n, 2), 5) % n) == 0; \\ Michel Marcus, Jan 29 2020
    

A357111 For n >= 1, a(n) = n / A076775(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 1, 11, 3, 13, 7, 15, 1, 17, 9, 19, 1, 1, 11, 23, 3, 25, 13, 27, 7, 29, 3, 31, 1, 3, 17, 35, 9, 37, 19, 39, 1, 41, 1, 43, 11, 45, 23, 47, 3, 49, 5, 51, 13, 53, 27, 55, 7, 57, 29, 59, 3, 61, 31, 3, 1, 65, 3, 67, 17, 23, 7, 71, 9, 73, 37, 75
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 11 2022

Keywords

Examples

			a(12) = 12 / A076775(12) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i;
      L:= convert(n,base,2);
      n/igcd(n,add(10^(i-1)*L[i],i=1..nops(L)));
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 11 2022
  • Mathematica
    a[n_] := n / GCD[n, FromDigits@IntegerDigits[n, 2]]; Array[a, 100] (* Amiram Eldar, Sep 11 2022 *)
  • Python
    from math import gcd
    def A357111(n): return n//gcd(n,int(bin(n)[2:])) # Chai Wah Wu, Sep 12 2022

Formula

a(n) = 1 for n = A076775(A032533(k)).
a(n) != n for n = A354837(k), a(n) = n for all other odd n.
a(n) != A000265(n) for n = 10*k and for n = 2^r * A354837(k), r >= 0, k >= 1.

A032535 Odd numbers that, when expressed in base 2 and then interpreted in base 10, yield a multiple of the original number.

Original entry on oeis.org

1, 21, 273, 2231, 10101, 28261, 611123, 1200341, 3427673, 8108919, 38636301, 51484647, 2202416417, 11102657671, 42822560781
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Examples

			273 is a term: 273_10 = 100010001_2; 100010001 = 273*366337. - _Jon E. Schoenfield_, Oct 25 2019
		

Crossrefs

= odd(A032533). See also A032532 for explanation.

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], Mod[ FromDigits@ IntegerDigits[#, 2], #] == 0 &] (* Giovanni Resta, Jul 12 2016 *)

Extensions

a(13)-a(15) from Giovanni Resta, Jul 12 2016

A174415 Numbers such that when expressed in base 2 and then interpreted in base 10, is not a multiple of the original number.

Original entry on oeis.org

3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2010

Keywords

Comments

Complement of A032533.

Examples

			For n=5; a(5) = 9, 9 in base 2 is 1001, which interpreted in base 10, 1001 is not multiple of 9.
		

Programs

  • Mathematica
    Select[Range[100],!Divisible[FromDigits[IntegerDigits[#,2]],#]&] (* Harvey P. Dale, Jul 10 2014 *)

A355297 a(n) = A007088(n) mod n.

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 6, 0, 2, 0, 10, 8, 9, 4, 1, 0, 5, 2, 17, 0, 0, 12, 14, 8, 1, 12, 22, 12, 23, 10, 13, 0, 11, 16, 16, 20, 16, 18, 37, 0, 18, 0, 4, 32, 31, 2, 14, 32, 45, 10, 4, 16, 20, 4, 1, 8, 22, 56, 32, 40, 20, 6, 42, 0, 41, 44, 36, 24, 15, 20, 5, 56, 25, 12, 61, 28, 24, 58, 23, 0
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 27 2022

Keywords

Comments

a(n) = 0 see A032533, a(n) = 1 see A339567.

Examples

			n = 7; a(7) = A007088(7) mod 7 = 111 mod 7 = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[FromDigits[IntegerDigits[n, 2]], n]; Array[a, 100] (* Amiram Eldar, Jun 27 2022 *)

Formula

a(n) = A007088(n) mod n. a(n) = A007088(n) - n * floor(A007088(n)/n).

A355300 a(0) = 0; for n >= 1, a(n) = a(A007088(n) mod n) + 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 4, 1, 1, 3, 3, 2, 2, 3, 4, 3, 4, 2, 4, 1, 3, 2, 2, 2, 2, 3, 3, 1, 3, 1, 2, 2, 5, 2, 3, 2, 6, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 3, 2, 1, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4, 3, 4, 4, 1, 3, 2, 4, 1, 3, 2, 4, 3, 3, 2, 2, 2
Offset: 0

Views

Author

Ctibor O. Zizka, Jun 27 2022

Keywords

Comments

Number of steps needed to reach zero when starting from k = n and repeatedly applying the map that replaces k by A007088(k) mod k. For a(n) = 1 see A032533.
a(95980631) = 26. - Charles R Greathouse IV, Jun 30 2022

Examples

			n = 12, a(12) = a(1100 mod 12) + 1 = a(8) + 1 = a(1000 mod 8) + 2 = a(0) + 2 = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[Mod[FromDigits[IntegerDigits[n, 2]], n]] + 1; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jun 27 2022 *)
  • PARI
    f(n) = fromdigits(binary(n), 10); \\ A007088
    a(n) = if (n, a(f(n) % n)+1, 0); \\ Michel Marcus, Jun 27 2022
Showing 1-10 of 10 results.