cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030457 Numbers k such that k concatenated with k+1 is prime.

Original entry on oeis.org

2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, 150, 156, 180, 186, 188, 192, 200, 216, 242, 246, 252, 270, 276, 278, 300, 308, 312, 318, 330, 338, 342, 350, 362, 368, 378, 390, 402, 410, 416, 420, 426, 428, 432
Offset: 1

Views

Author

Keywords

Comments

k is not congruent to 1 (mod 2), 1 (mod 3), or 4 (mod 5). - Charles R Greathouse IV, Apr 16 2012

Examples

			1213 is prime, therefore 12 is a term.
		

Crossrefs

Cf. A010051, A001704, A068700 (subsequence).
Numbers k such that k concatenated with k+m is prime: this sequence (m=1), A032617 (m=2), A032618 (m=3), A032619 (m=4), A032620 (m=5), A032621 (m=6), A032622 (m=7), A032623 (m=8), A032624 (m=9).

Programs

  • Haskell
    a030457 n = a030457_list !! (n-1)
    a030457_list = filter ((== 1) . a010051' . a001704) [1..]
    -- Reinhard Zumkeller, Jun 27 2015, Apr 26 2011
    
  • Magma
    [n: n in [1..500] | IsPrime(Seqint(Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Jul 23 2016
    
  • Maple
    concat:=proc(a,b) local bb: bb:=nops(convert(b,base,10)): 10^bb*a+b end proc: a:=proc(n) if isprime(concat(n,n+1))=true then n else end if end proc: seq(a(n),n=0..500); # Emeric Deutsch, Nov 23 2007
  • Mathematica
    Select[ Range[500], PrimeQ[ ToExpression[ StringJoin[ ToString[#], ToString[#+1]]]]&] (* Jean-François Alcover, Nov 18 2011 *)
    Select[Range[500],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ #+1]]]]&] (* Harvey P. Dale, Dec 23 2015 *)
    Position[#[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Range[ 500], 2,1],?PrimeQ]//Flatten (* _Harvey P. Dale, Jul 14 2019 *)
  • PARI
    for(n=1,10^5,if(isprime(eval(concat(Str(n),n+1))),print1(n,", "))); /* Joerg Arndt, Apr 27 2011 */
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(int(str(n)+str(n+1)))
    print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Apr 19 2023

A032629 Primes that are concatenations of n with n + 6.

Original entry on oeis.org

17, 1117, 1319, 1723, 2531, 3137, 3541, 4349, 6571, 7177, 8389, 95101, 97103, 101107, 125131, 127133, 137143, 151157, 155161, 157163, 161167, 163169, 167173, 187193, 197203, 203209, 205211, 211217, 217223, 221227, 223229
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A375091 First element p of sexy prime pairs (p,p+6) whose concatenation is also prime.

Original entry on oeis.org

11, 13, 17, 31, 83, 97, 101, 151, 157, 167, 223, 227, 233, 251, 257, 263, 271, 331, 353, 373, 433, 461, 541, 601, 653, 677, 727, 821, 823, 877, 941, 971, 1013, 1033, 1181, 1187, 1223, 1367, 1447, 1453, 1657, 1693, 1741, 1861, 1973, 1993, 1997, 2207, 2281, 2333, 2393, 2441
Offset: 1

Views

Author

James S. DeArmon, Jul 29 2024

Keywords

Examples

			11 is the first term, since (11,17) are sexy primes and 1117 is also prime.
The second term is 13, since 1319 is prime.
		

Crossrefs

Intersection of A023201 and A032621.

Programs

  • Maple
    q:= p-> andmap(isprime, [p, p+6, parse(cat(p, p+6))]):
    select(q, [$2..3000])[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    Select[Prime[Range[370]], PrimeQ[#+6] && PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[#+6]]]] &] (* Stefano Spezia, Aug 03 2024 *)
  • PARI
    isp(p) = isprime(p+6) && isprime(eval(concat(Str(p), Str(p+6))))
    select(isp, primes(100)) \\ Michel Marcus, Aug 02 2024
  • Python
    from sympy import isprime
    def ok(n): return isprime(n) and isprime(n+6) and isprime(int(str(n)+str(n+6)))
    print([k for k in range(2500) if ok(k)]) # Michael S. Branicky, Aug 01 2024
    
Showing 1-3 of 3 results.