cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006877 In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.

Original entry on oeis.org

1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
This sequence without a(2) = 2 specifies where records occur in A208981. - Omar E. Pol, Apr 14 2022

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006877 := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
  • Mathematica
    numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-François Alcover, Feb 14 2012 *)
    DeleteDuplicates[Table[{n,Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]},{n,838000}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    A006577(n)=my(s);while(n>1,n=if(n%2,3*n+1,n/2);s++);s
    step(n,r)=my(t);forstep(k=bitor(n,1),2*n,2,t=A006577(k);if(t>r,return([k,t])));[2*n,r+1]
    r=0;print1(n=1);for(i=1,100,[n,r]=step(n,r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013
    
  • Python
    c1 = lambda x: (3*x+1 if (x%2) else x>>1)
    r = -1
    for n in range(1, 10**5):
        a=0 ; n1=n
        while n>1: n=c1(n); a+=1;
        if a > r: print(n1, end = ', '); r=a
    print('...') # Ya-Ping Lu and Robert Munafo, Mar 22 2024

A006884 In the '3x+1' problem, these values for the starting value set new records for highest point of trajectory before reaching 1.

Original entry on oeis.org

1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, 1042431, 1212415, 1441407, 1875711, 1988859, 2643183, 2684647, 3041127, 3873535, 4637979, 5656191
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
Where records occur in A025586: A006885(n) = A025586(a(n)) and A025586(m) < A006885(n) for m < a(n). - Reinhard Zumkeller, May 11 2013

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A060409 gives associated "dropping times", A060410 the maximal values and A060411 the steps at which the maxima occur.

Programs

  • Haskell
    a006884 n = a006884_list !! (n-1)
    a006884_list = f 1 0 a025586_list where
       f i r (x:xs) = if x > r then i : f (i + 1) x xs else f (i + 1) r xs
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; t={1,max=2}; Do[If[(y=mcoll[n])>max,max=y; AppendTo[t,n]],{n,3,705000,4}]; t (* Jayanta Basu, May 28 2013 *)
    DeleteDuplicates[Parallelize[Table[{n,Max[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]},{n,57*10^5}]],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Apr 23 2023 *)
  • PARI
    A025586(n)=my(r=n); while(n>2, if(n%2, n=3*n+1; if(n>r, r=n)); n>>=1); r
    r=0; for(n=1,1e6, t=A025586(n); if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, May 25 2016

A006885 Record highest point of trajectory before reaching 1 in '3x+1' problem, corresponding to starting values in A006884.

Original entry on oeis.org

1, 2, 16, 52, 160, 9232, 13120, 39364, 41524, 250504, 1276936, 6810136, 8153620, 27114424, 50143264, 106358020, 121012864, 593279152, 1570824736, 2482111348, 2798323360, 17202377752, 24648077896, 52483285312, 56991483520, 90239155648, 139646736808
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
Record values in A025586: a(n) = A025586(A006884(n)) and A025586(m) < a(n) for m < A006884(n). - Reinhard Zumkeller, May 11 2013
In an email of Aug 06 2023, Guy Chouraqui observes that the digital root of a(n) appears to be 7 for all n > 2. - N. J. A. Sloane, Aug 11 2023

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006885 = a025586 . a006884  -- Reinhard Zumkeller, May 11 2013
  • Mathematica
    mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>=n&]; t={1,max=2}; Do[If[(y=mcoll[n])>max,AppendTo[t,max=y]],{n,3,10^6,4}]; t (* Jayanta Basu, May 28 2013 *)

A006878 Record number of steps to reach 1 in '3x+1' problem, corresponding to starting values in A006877.

Original entry on oeis.org

0, 1, 7, 8, 16, 19, 20, 23, 111, 112, 115, 118, 121, 124, 127, 130, 143, 144, 170, 178, 181, 182, 208, 216, 237, 261, 267, 275, 278, 281, 307, 310, 323, 339, 350, 353, 374, 382, 385, 442, 448, 469, 508, 524, 527, 530, 556, 559, 562, 583, 596, 612, 664, 685, 688, 691, 704
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
  • Mathematica
    numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While[x != 1, If[Mod[x, 2] == 0, x = x/2, x = 3*x+1]; nos++]; nos]; A006878 = numberOfSteps /@ A006877 (* Jean-François Alcover, Feb 22 2012 *)
    DeleteDuplicates[Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]],{n,0,10^6}],GreaterEqual]-1 (* The program generates the first 44 terms of the sequence, derived from all starting values from 1 up to and including 1 million. *) (* Harvey P. Dale, Nov 26 2022 *)

A033958 In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.

Original entry on oeis.org

1, 3, 7, 9, 25, 27, 73, 97, 129, 171, 231, 313, 327, 703, 871, 1161, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799, 1117065, 1501353, 1723519, 2298025, 3064033
Offset: 1

Views

Author

Keywords

Comments

Only the 3x+1 steps, not the halving steps, are counted.

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.

Crossrefs

Programs

  • Haskell
    a033958 n = a033958_list !! (n-1)
    -- For definition of a033958_list: see A033959.
    -- Reinhard Zumkeller, Jan 08 2014
  • Mathematica
    f[ nn_ ] := Module[ {c, n}, c = 0; n = nn; While[ n != 1, If[ Mod[ n, 2 ] == 0, n /= 2, n = 3*n + 1; c++ ] ]; Return[ c ] ] maxx = -1; For[ n = 1, n <= 10^8, n++, Module[ {val}, val = f[ n ]; If[ val > maxx, maxx = val; Print[ n, " ", val ] ] ] ] (* Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000 *)

Formula

Positions of records in A006667. - Sean A. Irvine, Jul 22 2020

Extensions

More terms from Jud McCranie, Jan 26 2000
Corrected with Mathematica code by Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
a(40)-a(43) from Charles R Greathouse IV, Oct 07 2013

A033959 Record number of steps to reach 1 in '3x+1' problem, corresponding to starting values in A033958.

Original entry on oeis.org

0, 2, 5, 6, 7, 41, 42, 43, 44, 45, 46, 47, 52, 62, 65, 66, 76, 79, 87, 96, 98, 101, 102, 103, 113, 114, 119, 125, 129, 130, 138, 141, 142, 164, 166, 174, 189, 195, 196, 197, 207, 208, 209, 217, 222, 228, 248, 256, 257, 258, 263, 278, 357, 358, 359, 362, 370
Offset: 1

Views

Author

Keywords

Comments

Only the 3x+1 steps, not the halving steps, are counted.

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.

Crossrefs

Programs

  • Haskell
    a033959 n = a033959_list !! (n-1)
    (a033959_list, a033958_list) = unzip $ (0, 1) : f 1 1 where
       f i x | y > x     = (y, 2 * i - 1) : f (i + 1) y
             | otherwise = f (i + 1) x
             where y = a075680 i
    -- Reinhard Zumkeller, Jan 08 2014
  • Maple
    A033959 := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; L := L+1; fi; od: RETURN(L); end;
  • Mathematica
    f[ nn_ ] := Module[ {c, n}, c = 0; n = nn; While[ n != 1, If[ Mod[ n, 2 ] == 0, n /= 2, n = 3*n + 1; c++ ] ]; Return[ c ] ] maxx = -1; For[ n = 1, n <= 10^8, n++, Module[ {val}, val = f[ n ]; If[ val > maxx, maxx = val; Print[ n, " ", val ] ] ] ]

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
More terms from Larry Reeves (larryr(AT)acm.org), Sep 27 2000
Offset corrected by Reinhard Zumkeller, Jan 08 2014

A143812 Maximal number of halving and tripling steps to reach 1 in '3x+1' problem for range (1, ..., n).

Original entry on oeis.org

1, 2, 8, 8, 8, 9, 17, 17, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 24, 24, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 113, 113, 113, 113, 113
Offset: 1

Views

Author

Benjamin Frost (benjamin.frost(AT)students.adelaide.edu.au), Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    nst[n_]:=Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]; nn=60; With[ {stps= Array[nst,nn]},Table[Max[Take[stps,n]],{n,nn}]]  (* Harvey P. Dale, Apr 17 2014 *)

Extensions

Corrected and extended by Harvey P. Dale, Apr 17 2014

A339614 Inputs n that yield a record-breaking value of A008908(n)/(log_2(n)+1) for the Collatz conjecture.

Original entry on oeis.org

1, 3, 7, 9, 27, 26623, 35655, 52527, 142587, 156159, 230631, 626331, 837799, 1723519, 3542887, 3732423, 5649499, 6649279, 8400511, 63728127, 3743559068799, 100759293214567, 104899295810901231
Offset: 1

Views

Author

Matthew Russell Downey, Dec 10 2020

Keywords

Comments

The metric A008908(n)/(log_2(n)+1) is always equal to 1 for any power of 2 (where 1 is the smallest possible value).

Examples

			a(1) = 1, which is trivial, because the first element in any sequence is record setting.
a(5) = 27, because A008908(n)/(log_2(n)+1) yields a maximum value at n=27 among the first 27 elements, and there are 4 record-breaking elements beforehand.
		

Crossrefs

Programs

  • Python
    import math
    oeis_A006877 = [1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 10623, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799, 1117065, 1501353, 1723519, 2298025, 3064033, 3542887, 3732423, 5649499, 6649279, 8400511, 11200681, 14934241, 15733191, 31466382, 36791535, 63728127]
    def stopping_time(n):
        time = 1
        while n>1:
            n = 3*n + 1 if n & 1 else n//2
            time += 1
        return time
    def stopping_time_metric(n):
        time = stopping_time(n)
        logarithmic_distance = (math.log(n, 2)+1)
        return float(time/logarithmic_distance)
    result = []
    record_input = oeis_A006877[0]
    record_stopping_time_metric = stopping_time_metric(record_input)
    result.append(record_input)
    for n in range(1, len(oeis_A006877)):
        current_input = oeis_A006877[n]
        current_stopping_time_metric = stopping_time_metric(current_input)
        if current_stopping_time_metric > record_stopping_time_metric:
            record_input = current_input
            record_stopping_time_metric = current_stopping_time_metric
            result.append(record_input)
    for n in range(len(result)):
        print(result[n], end=", ")
Showing 1-8 of 8 results.