cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006667 Number of tripling steps to reach 1 from n in '3x+1' problem, or -1 if 1 is never reached.

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 5, 0, 6, 1, 4, 2, 2, 5, 5, 0, 3, 6, 6, 1, 1, 4, 4, 2, 7, 2, 41, 5, 5, 5, 39, 0, 8, 3, 3, 6, 6, 6, 11, 1, 40, 1, 9, 4, 4, 4, 38, 2, 7, 7, 7, 2, 2, 41, 41, 5, 10, 5, 10, 5, 5, 39, 39, 0, 8, 8, 8, 3, 3, 3, 37, 6, 42, 6, 3, 6, 6, 11, 11, 1, 6, 40, 40, 1, 1, 9, 9, 4, 9, 4, 33, 4, 4, 38
Offset: 1

Views

Author

Keywords

Comments

A075680, which gives the values for odd n, isolates the essential behavior of this sequence. - T. D. Noe, Jun 01 2006
A033959 and A033958 give record values and where they occur. - Reinhard Zumkeller, Jan 08 2014

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 204, Problem 22.
  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A078719(n)-1.

Programs

  • Haskell
    a006667 = length . filter odd . takeWhile (> 2) . (iterate a006370)
    a006667_list = map a006667 [1..]
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          `if`(n::even, a(n/2), 1+a(3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 08 2023
  • Mathematica
    Table[Count[Differences[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]], ?Positive], {n,100}] (* _Harvey P. Dale, Nov 14 2011 *)
  • PARI
    for(n=2,100,s=n; t=0; while(s!=1,if(s%2==0,s=s/2,s=(3*s+1)/2; t++); if(s==1,print1(t,","); ); ))
    
  • Python
    def a(n):
        if n==1: return 0
        x=0
        while True:
            if n%2==0: n/=2
            else:
                n = 3*n + 1
                x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017

Formula

a(1) = 0, a(n) = a(n/2) if n is even, a(n) = a(3n+1)+1 if n>1 is odd. The Collatz conjecture is that this defines a(n) for all n >= 1.
a(n) = A078719(n) - 1; a(A000079(n))=0; a(A062052(n))=1; a(A062053(n))=2; a(A062054(n))=3; a(A062055(n))=4; a(A062056(n))=5; a(A062057(n))=6; a(A062058(n))=7; a(A062059(n))=8; a(A062060(n))=9. - Reinhard Zumkeller, Oct 08 2011
a(n*2^k) = a(n), for all k >= 0. - L. Edson Jeffery, Aug 11 2014
a(n) = floor(log(2^A006666(n)/n)/log(3)). - Joe Slater, Aug 30 2017
a(n) = a(A085062(n)) + A007814(n+1) for n >= 2. - Alan Michael Gómez Calderón, Feb 07 2025
From Alan Michael Gómez Calderón, Mar 31 2025: (Start)
a(n) = a(A139391(n)) + (n mod 2) for n >= 2;
a(n) = a(A139391(A000265(n))) - A209229(n) + 1 for n >= 2;
a(n) = a(A000265(A139391(n))) + (n mod 2) for n >= 2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017

A006878 Record number of steps to reach 1 in '3x+1' problem, corresponding to starting values in A006877.

Original entry on oeis.org

0, 1, 7, 8, 16, 19, 20, 23, 111, 112, 115, 118, 121, 124, 127, 130, 143, 144, 170, 178, 181, 182, 208, 216, 237, 261, 267, 275, 278, 281, 307, 310, 323, 339, 350, 353, 374, 382, 385, 442, 448, 469, 508, 524, 527, 530, 556, 559, 562, 583, 596, 612, 664, 685, 688, 691, 704
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
  • Mathematica
    numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While[x != 1, If[Mod[x, 2] == 0, x = x/2, x = 3*x+1]; nos++]; nos]; A006878 = numberOfSteps /@ A006877 (* Jean-François Alcover, Feb 22 2012 *)
    DeleteDuplicates[Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]],{n,0,10^6}],GreaterEqual]-1 (* The program generates the first 44 terms of the sequence, derived from all starting values from 1 up to and including 1 million. *) (* Harvey P. Dale, Nov 26 2022 *)

A033958 In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.

Original entry on oeis.org

1, 3, 7, 9, 25, 27, 73, 97, 129, 171, 231, 313, 327, 703, 871, 1161, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799, 1117065, 1501353, 1723519, 2298025, 3064033
Offset: 1

Views

Author

Keywords

Comments

Only the 3x+1 steps, not the halving steps, are counted.

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.

Crossrefs

Programs

  • Haskell
    a033958 n = a033958_list !! (n-1)
    -- For definition of a033958_list: see A033959.
    -- Reinhard Zumkeller, Jan 08 2014
  • Mathematica
    f[ nn_ ] := Module[ {c, n}, c = 0; n = nn; While[ n != 1, If[ Mod[ n, 2 ] == 0, n /= 2, n = 3*n + 1; c++ ] ]; Return[ c ] ] maxx = -1; For[ n = 1, n <= 10^8, n++, Module[ {val}, val = f[ n ]; If[ val > maxx, maxx = val; Print[ n, " ", val ] ] ] ] (* Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000 *)

Formula

Positions of records in A006667. - Sean A. Irvine, Jul 22 2020

Extensions

More terms from Jud McCranie, Jan 26 2000
Corrected with Mathematica code by Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
a(40)-a(43) from Charles R Greathouse IV, Oct 07 2013
Showing 1-3 of 3 results.