A211981 Numbers n such that floor(2^A006666(n)/3^A006667(n)) = n.
1, 2, 3, 4, 5, 8, 10, 16, 21, 32, 42, 64, 75, 85, 113, 128, 151, 170, 227, 256, 341, 512, 682, 1024, 1365, 2048, 2730, 4096, 5461, 7281, 8192, 10922, 14563, 16384, 21845, 32768, 43690, 65536, 87381, 131072, 174762, 262144, 349525, 466033, 524288, 699050, 932067
Offset: 1
Keywords
Examples
227 is in the sequence because A006666(227) = 11, A006667(227) = 2 => floor(2^11/3^2) = 227. The Collatz trajectory of 227 is 227 -> 682 -> 341 -> 1024 -> 512 -> ... -> 2 -> 1, and 227 is in the subset E1 implies the following Collatz iterates: 227 = floor(2^11/3^2); 682 = floor(2^11/3^1); 341 = floor(2^10/3^1); 1024 = floor(2^10/3^0); 512 = floor(2^9/3^0); 256 = floor(2^8/3^0); 128 = floor(2^7/3^0); ... 2 = floor(2^1/3^0); 1 = floor(2^0/3^0); With the numbers of E1, we obtain another formulation of the Collatz problem.
Programs
-
Maple
A:= proc(n) if type(n, 'even') then n/2; else 3*n+1 ; end if; end proc: B:= proc(n) a := 0 ; x := n ; while x > 1 do x := A(x) ; a := a+1 ; end do; a ; end proc: C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc: D:= proc(n) C(n) ; end proc: A006666:= proc(n) B(n)- C(n) ; end: A006667:= proc(n) C(n)- D(n) ; end: G:= proc(n) floor(2^ A006666 (n)/3^ A006667 (n)) ; end: for i from 1 to 1000000 do: if G(i) =i then printf(`%d, `,i):else fi:od:
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 30; t = {}; n = 0; While[Length[t] < nn, n++; c = Collatz[n]; ev = Length[Select[c, EvenQ]]; od = Length[c] - ev - 1; If[Floor[2^ev/3^od] == n, AppendTo[t, n]]]; t (* T. D. Noe, Feb 13 2013 *)
Comments