cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033583 a(n) = 10*n^2.

Original entry on oeis.org

0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 5-partite graph of order 5n, K_n,n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
10 times the squares. - Omar E. Pol, Dec 13 2008
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 10*A000290(n) = 5*A001105(n) = 2*A033429(n). - Omar E. Pol, Dec 13 2008
a(n) = A158187(n) - 1. - Reinhard Zumkeller, Mar 13 2009
a(n) = 20*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = t(5*n) - 5*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(5*n) - 5*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/120.
Product_{n>=1} (1 + 1/a(n)) = sqrt(10)*sinh(Pi/sqrt(10))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(10)*sin(Pi/sqrt(10))/Pi. (End)
From Stefano Spezia, Jul 06 2021: (Start)
O.g.f.: 10*x*(1 + x)/(1 - x)^3.
E.g.f.: 10*exp(x)*x*(1 + x). (End)