A033583 a(n) = 10*n^2.
0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(10*n^2,n=0..41); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
10*Range[0,50]^2 (* Harvey P. Dale, Apr 20 2011 *)
-
PARI
a(n)=10*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = A158187(n) - 1. - Reinhard Zumkeller, Mar 13 2009
a(n) = 20*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = t(5*n) - 5*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(5*n) - 5*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/120.
Product_{n>=1} (1 + 1/a(n)) = sqrt(10)*sinh(Pi/sqrt(10))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(10)*sin(Pi/sqrt(10))/Pi. (End)
From Stefano Spezia, Jul 06 2021: (Start)
O.g.f.: 10*x*(1 + x)/(1 - x)^3.
E.g.f.: 10*exp(x)*x*(1 + x). (End)
Comments