A033586 a(n) = 4*n*(2*n + 1).
0, 12, 40, 84, 144, 220, 312, 420, 544, 684, 840, 1012, 1200, 1404, 1624, 1860, 2112, 2380, 2664, 2964, 3280, 3612, 3960, 4324, 4704, 5100, 5512, 5940, 6384, 6844, 7320, 7812, 8320, 8844, 9384, 9940, 10512, 11100, 11704, 12324, 12960, 13612, 14280
Offset: 0
References
- E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Tim Krabbe, Open Chess Diary, see item 221
- Wikipedia, Friendship graph
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[4*n*(2*n + 1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 22 2015
-
Maple
A033586:=n->4*n*(2*n+1); seq(A033586(n), n=0..60); # Wesley Ivan Hurt, Feb 25 2014
-
Mathematica
Table[4n*(2n + 1), {n, 0, 60}] (* Stefan Steinerberger, Apr 08 2006 *) LinearRecurrence[{3,-3,1},{0,12,40},60] (* Harvey P. Dale, May 19 2011 *)
-
PARI
a(n)=4*n*(2*n+1) \\ Charles R Greathouse IV, Jul 16 2011
Formula
Binomial transform of [12, 28, 16, 0, 0, 0, ...] = (12, 40, 84, 144, 220, ...). - Gary W. Adamson, Oct 24 2007
a(n) = 4 * A014105(n). - Johannes W. Meijer, Feb 04 2010
a(n) = 16*n + a(n-1) - 4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 10 2011
G.f.: 4*x*(3+x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
From Wesley Ivan Hurt, Feb 25 2014, Dec 22 2015: (Start)
a(n) = Sum_{i=3n..5n} i.
a(-n) = A085250(n). (End)
E.g.f.: (8*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 16 2017
From Vaclav Kotesovec, Dec 21 2020: (Start)
Sum_{n>=1} 1/a(n) = (1 - log(2))/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - Pi/8 - log(2)/4. (End)
Extensions
More terms from Erich Friedman
Crossref added, minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Comments