A033951 Write 1,2,... in a clockwise spiral; sequence gives numbers on positive x axis.
1, 8, 23, 46, 77, 116, 163, 218, 281, 352, 431, 518, 613, 716, 827, 946, 1073, 1208, 1351, 1502, 1661, 1828, 2003, 2186, 2377, 2576, 2783, 2998, 3221, 3452, 3691, 3938, 4193, 4456, 4727, 5006, 5293, 5588, 5891, 6202, 6521, 6848, 7183, 7526, 7877, 8236, 8603, 8978
Offset: 0
Examples
Spiral begins: . 65--66--67--68--69--70--71--72--73 | | 64 37--38--39--40--41--42--43 74 | | | | 63 36 17--18--19--20--21 44 75 | | | | | | 62 35 16 5---6---7 22 45 76 | | | | | | | | 61 34 15 4 1 8 23 46 77 | | | | | | | | 60 33 14 3---2 9 24 47 | | | | | | 59 32 13--12--11--10 25 48 | | | | 58 31--30--29--28--27--26 49 | | 57--56--55--54--53--52--51--50 From _Aaron David Fairbanks_, Mar 06 2025: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 8 23 46 (End)
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Robert G. Wilson v, Cover of the March 1964 issue of Scientific American
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Programs
-
Maple
A033951:=n->4*n^2 + 3*n + 1: seq(A033951(n), n=0..100); # Wesley Ivan Hurt, Feb 11 2017
-
Mathematica
lst={};Do[p=4*n^2+3*n+1;AppendTo[lst, p], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *) LinearRecurrence[{3,-3,1},{1,8,23},60] (* Harvey P. Dale, Feb 07 2015 *) CoefficientList[Series[(1 + 5 x + 2 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Feb 12 2017 *)
-
PARI
a(n)=4*n^2+3*n+1
-
Python
[4*n**2 + 3*n + 1 for n in range(46)] # Michael S. Branicky, Jan 08 2021
Formula
a(n) = 4*n^2 + 3*n + 1.
G.f.: (1 + 5*x + 2*x^2)/(1-x)^3.
A014848(2n+1) = a(n).
Equals A132774 * [1, 2, 3, ...]; = binomial transform of [1, 7, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 28 2007
a(n) = A016754(n) - n. - Reinhard Zumkeller, May 17 2009
a(n) = a(n-1) + 8*n-1 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
a(0)=1, a(1)=8, a(2)=23, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 07 2015
E.g.f.: exp(x)*(1 + 7*x + 4*x^2). - Stefano Spezia, Apr 24 2024
Extensions
Extended (with formula) by Erich Friedman
Comments