cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A033983 Integers n such that 2^n == 15 (mod n).

Original entry on oeis.org

1, 13, 481, 44669, 1237231339, 1546675117, 62823773963, 284876771881, 1119485807557, 26598440989093
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^14.

Crossrefs

Programs

  • Mathematica
    m = 15; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

One more term from Joe K. Crump (joecr(AT)carolina.rr.com), Jun 20 2000
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 13 prepended by Max Alekseyev, May 18 2011
a(10) from Max Alekseyev, Dec 15 2013

A051447 Integers n such that 2^n == 9 (mod n).

Original entry on oeis.org

1, 7, 2228071, 16888457, 352978207, 1737848873, 77362855777, 567442642711
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^15. [Max Alekseyev, May 20 2012]

Crossrefs

Programs

  • Mathematica
    m = 9; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2008, at the suggestion of Don Reble
Terms 1, 7 prepended by Max Alekseyev, May 18 2011

A128121 Numbers k such that 2^k == 5 (mod k).

Original entry on oeis.org

1, 3, 19147, 129505699483, 674344345281, 1643434407157, 5675297754009, 12174063716147, 162466075477787, 313255455573801, 324082741109271
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128122, A128123, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 5; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 3 added by N. J. A. Sloane, Apr 23 2007
Missing a(10) inserted by Sergey Paramonov, Sep 06 2021

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A215612 Odd integers n such that 2^n == 2^10 (mod n).

Original entry on oeis.org

1, 7, 73, 9271, 3195367, 6769801, 15413863, 24540337, 47424961, 52268743, 146583343, 384586849, 469501471, 475882081, 859764727, 1097475991, 1169323417, 1400034919, 2518532047, 2870143993, 3258854623, 5609707729, 6022970047, 6420870271, 9011348521
Offset: 1

Views

Author

Max Alekseyev, Aug 17 2012

Keywords

Comments

Also, the odd solutions to 2^(n-10) == 1 (mod n). The only even solution is n=10.
For all m, 2^A033982(m)-1 belongs to this sequence.

Crossrefs

The odd terms of A015932.

Programs

  • Mathematica
    m = 2^10; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)

A051446 Integers n such that 2^n == 13 (mod n).

Original entry on oeis.org

1, 11, 95, 4834519, 156203641, 135466795859, 182901372149135
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^15.
Larger terms: 1910102794991114096035717. - Max Alekseyev, May 18 2011

Crossrefs

Programs

  • Mathematica
    m = 13; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Terms 1, 11 prepended by Max Alekseyev, May 18 2011
a(7) added by Sergey Paramonov, Sep 05 2021

A128123 Numbers k such that 2^k == 10 (mod k).

Original entry on oeis.org

1, 2, 6, 18, 16666, 262134, 4048124214, 24430928839, 243293052886, 41293676570106, 3935632929857549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

Some larger terms: 266895924489780149, 2335291686841914329, 18494453435532853111

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 10; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2 and 6 added by N. J. A. Sloane, Apr 23 2007
Missing terms a(9)-a(10) added by Max Alekseyev, Dec 16 2013
a(11) from Max Alekseyev, Sep 27 2016

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A128124 Numbers k such that 2^k == 12 (mod k).

Original entry on oeis.org

1, 2, 4, 5, 3763, 125714, 167716, 1803962, 2895548, 4031785, 36226466, 16207566916, 103742264732, 29000474325364, 51053256144532, 219291270961199, 1611547934753332, 5816826177630619
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Programs

  • Mathematica
    m = 12; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

More terms from Ryan Propper, Mar 23 2007
1, 2, 4 and 5 added by N. J. A. Sloane, Apr 23 2007
a(13)-a(15) from Max Alekseyev, May 19 2011
a(15) corrected, a(16)-a(18) added by Max Alekseyev, Oct 02 2016

A015932 Positive integers n such that 2^n == 2^10 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 10, 12, 16, 24, 28, 30, 32, 34, 48, 50, 64, 70, 73, 96, 110, 112, 128, 130, 150, 170, 190, 192, 230, 256, 290, 310, 330, 370, 384, 410, 430, 442, 448, 470, 512, 530, 532, 550, 590, 610, 670, 710
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215612.
For all m, 2^A033982(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^10, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011
Showing 1-10 of 14 results. Next