A033991 a(n) = n*(4*n-1).
0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0
Examples
Clockwise spiral (with sequence terms parenthesized) begins 16--17--18--19 | 15 4---5---6 | | | (14) (3) (0) 7 | | | | 13 2---1 8 | | 12--11--10---9
References
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Emilio Apricena, A version of the Ulam spiral.
- Eric W. Weisstein, Windmill Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences from spirals: A001107, A002939, A007742, A033951-A033954, A033989-A033991, A002943, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Programs
-
Maple
[seq(binomial(4*n, 2)/2, n=0..45)]; # Zerinvary Lajos, Jan 16 2007
-
Mathematica
Table[n*(4*n - 1), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *) LinearRecurrence[{3,-3,1},{0,3,14},50] (* Harvey P. Dale, Oct 10 2011 *)
-
PARI
a(n)=4*n^2-n;
Formula
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022
Extensions
Two remarks combined into one by Emeric Deutsch, Oct 03 2010
Comments