cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A061419 a(n) = ceiling(a(n-1)*3/2) with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, 140, 210, 315, 473, 710, 1065, 1598, 2397, 3596, 5394, 8091, 12137, 18206, 27309, 40964, 61446, 92169, 138254, 207381, 311072, 466608, 699912, 1049868, 1574802, 2362203, 3543305, 5314958, 7972437, 11958656
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

It appears that this sequence is the (L)-sieve transform of {3,6,9,12,...,3n,...} = A008585. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 06 2009

Examples

			a(6) = ceiling(8*3/2) = 12.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30.1, p. 196.

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 1 else Ceiling(Self(n-1)*3/2): n in [1..40] ]; // Klaus Brockhaus, Nov 14 2008
    
  • Maple
    a:=proc(n) option remember: if n=1 then 1 else ceil(procname(n-1)*3/2) fi; end; seq(a(n),n=1..40); # Muniru A Asiru, Jun 07 2018
  • Mathematica
    a=1;a=Table[a=Ceiling[a*3/2],{n,0,4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    NestList[Ceiling[3#/2]&,1,39] (* Stefano Spezia, Dec 08 2024 *)
  • PARI
    { a=2/3; for (n=1, 500, write("b061419.txt", n, " ", a=ceil(a*3/2)) ) } \\ Harry J. Smith, Jul 22 2009
    
  • Python
    from itertools import islice
    def A061419_gen(): # generator of terms
        a = 2
        while True:
            yield a-1
            a += a>>1
    A061419_list = list(islice(A061419_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061418(n) - 1 = floor(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(1) = 1, a(n) = A070885(n)/3. - Benoit Cloitre, Aug 18 2002
a(n) = ceiling((a(n-1) + a(n-2))*9/10) - Franklin T. Adams-Watters, May 01 2006

A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2.

Original entry on oeis.org

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - Denis Moskowitz, Dec 05 2012
Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - Chinmaya Dash, Aug 19 2020

Examples

			a(6) = floor(9*3/2) = 13.
		

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008
    
  • PARI
    { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022
    
  • Python
    from itertools import islice
    def A061418_gen(): # generator of terms
        a = 2
        while True:
            yield a
            a += a>>1
    A061418_list = list(islice(A061418_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003

A034062 Decimal part of a(n)^(1/7) starts with n (7th powers excluded).

Original entry on oeis.org

129, 2, 4, 7, 11, 18, 27, 42, 62, 90, 2, 187, 193, 199, 206, 213, 3, 227, 234, 242, 250, 4, 266, 275, 283, 5, 302, 311, 321, 6, 341, 351, 7, 373, 8, 396, 9, 420, 10, 446, 11, 473, 12, 501, 13, 14, 546, 15, 16, 17, 611, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			a(0)=129 -> 129^(1/7)=2.{0}022247...: a(1)=2 -> 2^(1/7)=1.{1}040895...
		

Crossrefs

A034072 Decimal part of a(n)^(1/7) starts with n so that a(n) < a(n+1).

Original entry on oeis.org

129, 181, 250, 341, 459, 611, 804, 1047, 1350, 1725, 2752, 2814, 2878, 2944, 3010, 3078, 3147, 3217, 3289, 3362, 3436, 3512, 3590, 3668, 3749, 3830, 3914, 3998, 4085, 4173, 4262, 4354, 4446, 4541, 4637, 4735, 4835, 4937, 5040, 5146, 5253, 5362, 5473
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			a(11)=2814 -> 2814^(1/7)=3.{11}000140...;
a(12)=2878 -> 2878^(1/7)=3.{12}000885... and a(11)=2814 < 2878.
		

Crossrefs

A334264 Numbers k > 1 such that (3/2)^k sets a new record for closest fractional part to 1/2.

Original entry on oeis.org

2, 3, 5, 9, 11, 69, 420, 2361, 12432, 21565, 28226, 128389, 274555, 497269, 836000, 1151341, 1973112, 2202332, 2458844, 5402520
Offset: 1

Views

Author

Ben Paul Thurston, Apr 20 2020

Keywords

Crossrefs

A081464 is also related to (3/2) to a power being a record distance from a value of an integer.

Programs

  • Maple
    off := 1; for i from 2 to 1000 do t := (1+1/2)^i-floor((1+1/2)^i); d := abs(1/2-t); if d < off then off := d; print(i) end if end do
  • Mathematica
    dm = 1; r = 3/2; s = {}; Do[r *= 3/2; If[(d = Abs[r - Floor[r] - 1/2]) < dm, dm = d; AppendTo[s, n + 1]], {n, 1, 10^7}]; s (* Amiram Eldar, Jun 08 2020 *)

Extensions

a(8)-a(13) from Amiram Eldar, Jun 08 2020
a(14)-a(16) from Chai Wah Wu, Jul 02 2020
a(17)-a(20) from Bert Dobbelaere, Apr 25 2021
Showing 1-5 of 5 results.