A034386 Primorial numbers (second definition): n# = product of primes <= n.
1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130
Offset: 0
Examples
a(5) = a(6) = 2*3*5 = 30; a(7) = 2*3*5*7 = 210.
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3, p. 14, "n?".
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.35, p. 268.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2370 (first 401 terms from T. D. Noe)
- Jens Askgaard, On the additive period length of the Sprague-Grundy function of certain Nim-like games, arXiv:1902.06299 [math.CO], 2019.
- Klaus Dohmen and Martin Trinks, An Abstraction of Whitney's Broken Circuit Theorem, arXiv:1404.5480 [math.CO], 2014.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., Vol. 6, No. 1 (1962), 64-94.
- Eric Weisstein's World of Mathematics, Primorial.
Crossrefs
Programs
-
Magma
[n eq 0 select 1 else LCM(PrimesInInterval(1, n)) : n in [0..50]]; // G. C. Greubel, Jul 21 2023
-
Maple
A034386 := n -> mul(k,k=select(isprime,[$1..n])); # Peter Luschny, Jun 19 2009 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, `if`(isprime(n), n, 1)*a(n-1)) end: seq(a(n), n=0..36); # Alois P. Heinz, Nov 26 2020
-
Mathematica
q[x_]:=Apply[Times,Table[Prime[w],{w,1,PrimePi[x]}]]; Table[q[w],{w,1,30}] With[{pr=FoldList[Times,1,Prime[Range[20]]]},Table[pr[[PrimePi[n]+1]],{n,0,40}]] (* Harvey P. Dale, Apr 05 2012 *) Table[ResourceFunction["Primorial"][i], {i,1,40}] (* Navvye Anand, May 22 2024 *)
-
PARI
a(n)=my(v=primes(primepi(n)));prod(i=1,#v,v[i]) \\ Charles R Greathouse IV, Jun 15 2011
-
PARI
a(n)=lcm(primes([2,n])) \\ Jeppe Stig Nielsen, Mar 10 2019
-
Python
from sympy import primorial def A034386(n): return 1 if n == 0 else primorial(n,nth=False) # Chai Wah Wu, Jan 11 2022
-
SageMath
def sharp_primorial(n): return sloane.A002110(prime_pi(n)) [sharp_primorial(n) for n in (0..30)] # Giuseppe Coppoletta, Jan 26 2015
Formula
Asymptotic expression for a(n): exp((1 + o(1)) * n) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, log(a(n)) < 1.01624*n. [Rosser and Schoenfeld, 1962; Sándor et al., 2005] - N. J. A. Sloane, Apr 04 2017
a(n) <= A179215(n). - Reinhard Zumkeller, Jul 05 2010
Sum_{n>=0} 1/a(n) = A249270. - Amiram Eldar, Nov 08 2020
Extensions
Offset changed and initial term added by Arkadiusz Wesolowski, Jun 04 2011
Comments