A034496 Sum of n-th powers of divisors of 8.
4, 15, 85, 585, 4369, 33825, 266305, 2113665, 16843009, 134480385, 1074791425, 8594130945, 68736258049, 549822930945, 4398314962945, 35185445863425, 281479271743489, 2251816993685505, 18014467229220865
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
Programs
-
Magma
[DivisorSigma(n,8): n in [0..20]]; // Vincenzo Librandi, Apr 17 2014
-
Mathematica
Total[#^Range[0, 20]&/@Divisors[8]] (* Vincenzo Librandi, Apr 17 2014 *) DivisorSigma[Range[0,20],8] (* Harvey P. Dale, May 16 2020 *)
-
PARI
a(n)=sigma(8, n) \\ Charles R Greathouse IV, May 16 2011
-
Sage
[sigma(8,n) for n in range(0,19)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: (4 - 45*x + 140*x^2 - 120*x^3)/((1 - 8*x)*(1 - 4*x)*(1 - 2*x)*(1 - x)). [Bruno Berselli, Apr 17 2014]
a(n) = (2^(4*n) - 1)/( 2^n - 1) = 1 + 2^n + 4^n + 8^n. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 15*x + 155*x^2 + 1395*x^3 + ... is the o.g.f. for the 3rd subdiagonal of triangle A022166, essentially A006096. - Peter Bala, Apr 07 2015
Comments