A034964 Sums of five consecutive primes.
28, 39, 53, 67, 83, 101, 119, 139, 161, 181, 199, 221, 243, 263, 287, 311, 331, 351, 373, 395, 421, 449, 473, 497, 517, 533, 559, 587, 617, 647, 683, 707, 733, 759, 787, 811, 839, 863, 891, 917, 941, 961, 991, 1023, 1057, 1089, 1123, 1151, 1169, 1193
Offset: 1
Examples
a(1) = prime(1+0) + prime(1+1) + prime(1+2) + prime(1+3) + prime(1+4) = 2 + 3 + 5 + 7 + 11 = 28. a(2) = prime(2+0) + prime(2+1) + prime(2+2) + prime(2+3) + prime(2+4) = 3 + 5 + 7 + 11 + 13 = 39.
References
- Owen O'Shea and Underwood Dudley, The Magic Numbers of the Professor, Mathematical Association of America (2007), p. 62
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[&+[ NthPrime(n+k): k in [0..4] ]: n in [1..100] ]; // Vincenzo Librandi, Apr 03 2011
-
Maple
A034964:=n->add(ithprime(i), i=n..n+4): seq(A034964(n), n=1..50); # Wesley Ivan Hurt, Sep 14 2014
-
Mathematica
Plus@@@Partition[Prime[Range[100]],5,1] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2010 *)
-
PARI
a(n) = sum(k=n, n+4, prime(k)); \\ Michel Marcus, Sep 03 2016
-
PARI
first(n) = {my(psum = 28, pr = List([2,3,5,7,11]), res = List([28])); for(i=2,n, psum -= pr[1]; listpop(pr, 1); listput(pr, nextprime(pr[4] + 1)); psum += pr[5]; listput(res, psum)); res} \\ David A. Corneth, Oct 14 2017
-
Sage
BB = primes_first_n(60) L = [] for i in range(55): L.append(BB[i]+BB[i+1]+BB[i+2]+BB[i+3]+BB[i+4]) L # Zerinvary Lajos, May 14 2007
Formula
a(n) = Sum_{i=n..n+4} prime(i). - Wesley Ivan Hurt, Sep 14 2014
Extensions
Offset changed to 1 by Joerg Arndt, Sep 04 2016
Comments