A035008 Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.
0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776
Offset: 0
Examples
3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Eric Weisstein's World of Mathematics, Star Polygon.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[8*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, May 22 2014
-
Maple
seq(binomial(n+1,2)*4^2, n=0..33); # Zerinvary Lajos, Aug 07 2008
-
Mathematica
CoefficientList[Series[16 x/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 24 2014 *) LinearRecurrence[{3,-3,1},{0,16,48},50] (* or *) 16*Accumulate[ Range[ 0,50]] (* Harvey P. Dale, Aug 05 2018 *)
-
PARI
a(n)=8*n*(n+1) \\ Charles R Greathouse IV, Sep 30 2015
Formula
a(n) = 8*n*(n+1).
G.f.: 16*x/(1-x)^3.
a(n) = A069129(n+1) - 1. - Omar E. Pol, Apr 26 2008
a(n) = binomial(n+1,2)*4^2, n >= 0. - Zerinvary Lajos, Aug 07 2008
a(n) = 8*n^2 + 8*n = 16*A000217(n) = 8*A002378(n) = 4*A046092(n) = 2*A033996(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 16*n, with a(0)=0. - Vincenzo Librandi, Nov 17 2010
E.g.f.: 8*exp(x)*x*(2 + x). - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/8.
Product_{n>=1} (1 - 1/a(n)) = -(8/Pi)*cos(sqrt(3/2)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (8/Pi)*cos(Pi/(2*sqrt(2))). (End)
Extensions
More terms from Erich Friedman
Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Comments