cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035328 a(n) = n*(2*n-1)*(2*n+1).

Original entry on oeis.org

0, 3, 30, 105, 252, 495, 858, 1365, 2040, 2907, 3990, 5313, 6900, 8775, 10962, 13485, 16368, 19635, 23310, 27417, 31980, 37023, 42570, 48645, 55272, 62475, 70278, 78705, 87780, 97527, 107970, 119133, 131040, 143715, 157182, 171465, 186588
Offset: 0

Views

Author

Keywords

Comments

Bisection of A027480. For n>1, gives area of triangle two of whose cevians bound three smaller triangles with areas n-1, n, n+1 contiguously. - Lekraj Beedassy, Dec 21 2006

References

  • Eric Harold Neville, Jacobian Elliptic Functions, 2nd ed., 1951, p. 38.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

Programs

  • Magma
    [n*(2*n-1)*(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
    
  • Mathematica
    Table[n(2n-1)(2n+1),{n,0,40}] (* Harvey P. Dale, Jan 11 2014 *)
  • PARI
    vector(100,n,(n-1)*(2*n-1)*(2*n-3)) \\ Derek Orr, Jan 29 2015

Formula

a(n) = 3*A000447(n) = 3*A000292(2*n-1).
Sum_{n>=1} 1/a(n) = 2*log(2) - 1. - Benoit Cloitre, Apr 05 2002
a(n) = A204558(2*n) / (2*n). - Reinhard Zumkeller, Jan 18 2012
G.f.: 3*x*(1 + 6*x + x^2)/(1 - x)^4. - Colin Barker, Mar 27 2012
Product_{n>=1} 4*n^3/a(n) = Pi/2. - Daniel Suteu, Feb 05 2017
a(n) = Sum_{i=0..2*n} A046092(n-1)+i = Sum_{i=2*n+1..4*n-1} A046092(n-1)+i for n>0. Example: for n = 5, A046092(4) = 40 and a(5) = 40 + 41 + 42 + ... + 49 + 50 = 51 + 52 + 53 + ... + 58 + 59 = 495. - Bruno Berselli, Oct 26 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2) (A244009). - Amiram Eldar, Jan 30 2021
E.g.f.: exp(x)*x*(3 + 12*x + 4*x^2). - Stefano Spezia, Sep 03 2023

Extensions

More terms from Benoit Cloitre, Apr 05 2002