A035328 a(n) = n*(2*n-1)*(2*n+1).
0, 3, 30, 105, 252, 495, 858, 1365, 2040, 2907, 3990, 5313, 6900, 8775, 10962, 13485, 16368, 19635, 23310, 27417, 31980, 37023, 42570, 48645, 55272, 62475, 70278, 78705, 87780, 97527, 107970, 119133, 131040, 143715, 157182, 171465, 186588
Offset: 0
References
- Eric Harold Neville, Jacobian Elliptic Functions, 2nd ed., 1951, p. 38.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
Programs
-
Magma
[n*(2*n-1)*(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
-
Mathematica
Table[n(2n-1)(2n+1),{n,0,40}] (* Harvey P. Dale, Jan 11 2014 *)
-
PARI
vector(100,n,(n-1)*(2*n-1)*(2*n-3)) \\ Derek Orr, Jan 29 2015
Formula
Sum_{n>=1} 1/a(n) = 2*log(2) - 1. - Benoit Cloitre, Apr 05 2002
a(n) = A204558(2*n) / (2*n). - Reinhard Zumkeller, Jan 18 2012
G.f.: 3*x*(1 + 6*x + x^2)/(1 - x)^4. - Colin Barker, Mar 27 2012
Product_{n>=1} 4*n^3/a(n) = Pi/2. - Daniel Suteu, Feb 05 2017
a(n) = Sum_{i=0..2*n} A046092(n-1)+i = Sum_{i=2*n+1..4*n-1} A046092(n-1)+i for n>0. Example: for n = 5, A046092(4) = 40 and a(5) = 40 + 41 + 42 + ... + 49 + 50 = 51 + 52 + 53 + ... + 58 + 59 = 495. - Bruno Berselli, Oct 26 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2) (A244009). - Amiram Eldar, Jan 30 2021
E.g.f.: exp(x)*x*(3 + 12*x + 4*x^2). - Stefano Spezia, Sep 03 2023
Extensions
More terms from Benoit Cloitre, Apr 05 2002
Comments