cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A030524 A convolution triangle of numbers obtained from A036068.

Original entry on oeis.org

1, 6, 1, 30, 12, 1, 135, 96, 18, 1, 567, 630, 198, 24, 1, 2268, 3654, 1701, 336, 30, 1, 8748, 19440, 12501, 3564, 510, 36, 1, 32805, 96957, 82296, 31644, 6435, 720, 42, 1, 120285, 459756, 498663, 247536, 66915, 10530, 966, 48, 1, 433026, 2092959
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := s1p(4; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle). Signed version: (-1)^(n-m)*a(n,m) := s1(4; n,m).

Examples

			{1}; {6,1}; {30,12,1}; {135,96,18,1}; {567,630,198,24,1}; ...
		

Crossrefs

Cf. A030523, A043553. a(n, 1)= A036068(n-1). Row sums = A043553(n).

Formula

a(n, m) = 3*(3*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n

A033842 Triangle of coefficients of certain polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 16, 16, 6, 1, 125, 125, 50, 10, 1, 1296, 1296, 540, 120, 15, 1, 16807, 16807, 7203, 1715, 245, 21, 1, 262144, 262144, 114688, 28672, 4480, 448, 28, 1, 4782969, 4782969, 2125764, 551124, 91854, 10206, 756, 36, 1, 100000000
Offset: 0

Keywords

Comments

See A049323.

Examples

			{1}; {1,1}; {3,3,1}; {16,16,6,1}; {125,125,50,10,1}; .... E.g. third row {3,3,1} corresponds to polynomial p(2,x)= 3*x^2+3*x+1.
		

Crossrefs

a(n, 0)= A000272(n+1), n >= 0 (first column), a(n, 1)= A000272(n+1), n >= 1 (second column). p(k-1, -x)/(1-k*x)^k = (-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
See also A049323.

Formula

a(n, m) = binomial(n+1, m)*(n+1)^(n-m-1), n >= m >= 0 else 0.

A080421 a(n) = (n+1)*(n+2)*(n+9)*3^n/18.

Original entry on oeis.org

1, 10, 66, 360, 1755, 7938, 34020, 139968, 557685, 2165130, 8227494, 30705480, 112842639, 409209570, 1466777160, 5203870272, 18294856425, 63795240522, 220829678730, 759344158440, 2595329855811, 8821564534530, 29832927334956, 100419390748800, 336561864306525
Offset: 0

Author

Paul Barry, Feb 19 2003

Keywords

Crossrefs

T(n,3) in triangle A080419.

Programs

  • Magma
    [(n+1)*(n+2)*(n+9)*3^n/18: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    Table[((n+1)(n+2)(n+9)3^n)/18,{n,0,30}] (* or *) LinearRecurrence[ {12,-54,108,-81},{1,10,66,360},30] (* Harvey P. Dale, Mar 21 2012 *)
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
  • SageMath
    [(n+1)*(n+2)*(n+9)*3^(n-2)/2 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^4.
a(n) = A006503(n+1)*3^(n-1).
a(n) = 12*a(n-1)-54*a(n-2)+108*a(n-3)-81*a(n-4). - Harvey P. Dale, Mar 21 2012
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = (n+9)*A036068(n-1).
a(n) = A136158(n+3, 3).
E.g.f.: (1/2)*(2 + 14*x + 15*x^2 + 3*x^3)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 44172*log(3/2)/7 - 20050659/7840.
Sum_{n>=0} (-1)^n/a(n) = 44496*log(4/3)/7 - 14329629/7840. (End)

A053113 Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.

Original entry on oeis.org

1, 55, 2200, 71500, 2002000, 50050000, 1144000000, 24310000000, 486200000000, 9237800000000, 167960000000000, 2939300000000000, 49742000000000000, 817190000000000000, 13075040000000000000, 204297500000000000000
Offset: 0

Keywords

Comments

This is the tenth member of the k-family of sequences a(k,n) := k^(n-1)*binomial(n+k,k-1) starting with A000012 (powers of 1), A001792, A036068, A036070, A036083, A036224, A053110-113 for k=1..10.

Programs

  • Magma
    [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
    LinearRecurrence[{100,-4500,120000,-2100000,25200000,-210000000,1200000000,-4500000000,10000000000,-10000000000},{1,55,2200,71500,2002000,50050000,1144000000,24310000000,486200000000,9237800000000},20] (* Harvey P. Dale, Jul 30 2025 *)
  • PARI
    vector(30,n,n--; 10^(n-1)*binomial(n+10, 9)) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = 10^(n-1)*binomial(n+10, 9).
G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).

A132166 A convolution triangle of numbers obtained from A036224.

Original entry on oeis.org

1, 21, 1, 336, 42, 1, 4536, 1113, 63, 1, 54432, 23184, 2331, 84, 1, 598752, 412272, 65205, 3990, 105, 1, 6158592, 6531840, 1518048, 139860, 6090, 126, 1, 60046272, 94618368, 30912840, 4010769, 256410, 8631, 147, 1, 560431872, 1274921856
Offset: 1

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

Signed version: (-1)^(n-m)*a(n, m) := s1(7; n,m).
a(n,m) := s1p(7; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle), A030523=s1p(3), A036068=s1p(4), A030526=s1p(5) and A030527=s1p(6).

Examples

			{1};{21,1};{336,42,1};{4536,1113,63,1};...; Row polynomial s(3,x)=336*x+42*x^2+x^3.
		

Crossrefs

Related triangle A134141 (S1p(7)).
Cf. A036224(n-1), n>=1 (first column). A132167 (row sums). A132168 (alternating row sums).

Formula

a(n, m) = 6*(6*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-6*x)^6)/(36*(1-6*x)^6))^m.

A049323 Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 50, 125, 125, 1, 15, 120, 540, 1296, 1296, 1, 21, 245, 1715, 7203, 16807, 16807, 1, 28, 448, 4480, 28672, 114688, 262144, 262144, 1, 36, 756, 10206, 91854, 551124, 2125764, 4782969, 4782969, 1, 45, 1200, 21000, 252000
Offset: 0

Keywords

Comments

These polynomials p(n, x) appear in the W. Lang reference as c1(-(n+1);x), n >= 0 on p.12. The coefficients are given there in eq.(44) on p. 6. - Wolfdieter Lang, Nov 20 2015

Examples

			The triangle a(n, m) begins:
n\m 0  1   2    3     4      5      6      7 ...
0:  1
1:  1  1
2:  1  3   3
3:  1  6  16   16
4:  1 10  50  125  125
5:  1 15 120  540  1296  1296
6:  1 21 245 1715  7203  16807  16807
7:  1 28 448 4480 28672 114688 262144 262144
... reformatted. - Wolfdieter Lang, Nov 20 2015
E.g. the third row {1,3,3} corresponds to polynomial p(2,x)= 1 + 3*x + 3*x^2.
		

Crossrefs

a(n, 0)= A000012 (powers of 1), a(n, 1)= A000217 (triangular numbers), a(n, n)= A000272(n+1), n >= 0 (diagonal), a(n, n-1)= A000272(n+1), n >= 1.
For n = 0..5 the row sequences a(n, m), m >= 0, are the first columns of the triangles A023531 (unit matrix), A030528, A049324, A049325, A049326, A049327, respectively.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1, k+1)*(n+1)^(k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 20 2015
  • Maple
    seq(seq(binomial(n+1,m+1)*(n+1)^(m-1),m=0..n),n=0..10); # Robert Israel, Oct 19 2015
  • Mathematica
    Table[Binomial[n + 1, k + 1] (n + 1)^(k - 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 19 2015 *)

Formula

a(n, m) = A033842(n, n-m) = binomial(n+1, m+1)*(n+1)^{m-1}, n >= m >= 0, else 0.
p(k-1, -x)/(1-k*x)^k =(-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
From Werner Schulte, Oct 19 2015: (Start)
a(2*n,n) = A000108(n)*(2*n+1)^n;
a(3*n,2*n) = A001764(n)*(3*n+1)^(2*n);
a(p*n,(p-1)*n) = binomial(p*n,n)/((p-1)*n+1)*(p*n+1)^((p-1)*n) for p > 0;
Sum_{m=0..n} (m+1)*a(n,m) = (n+2)^n;
Sum_{m=0..n} (-1)^m*(m+1)*a(n,m) = (-n)^n where 0^0 = 1;
p(n,x) = Sum_{m=0..n} a(n,m)*x^m = ((1+(n+1)*x)^(n+1)-1)/((n+1)^2*x).
(End)
Showing 1-6 of 6 results.