cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323305 Number of divisors of the number of prime factors of n counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

a(1) = 1 by convention.
First differs from A036430 at a(64) = 4, A036430(64) = 3.

Crossrefs

Positions of 1's are 1 and the prime numbers A008578.
Positions of 2's are A063989.

Programs

  • Mathematica
    Array[Length@*Divisors@*PrimeOmega,100]
  • PARI
    a(n) = if (n==1, 1, numdiv(bigomega(n))); \\ Michel Marcus, Jan 13 2019

Formula

a(n) = A000005(A001222(n)).

A073855 Number of steps to reach 0 starting with n and applying the process x ->bigomega(x), where bigomega = A001222.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 3, 2, 4, 3
Offset: 0

Views

Author

Benoit Cloitre, Sep 02 2002

Keywords

Examples

			bigomega(36) = 4, bigomega(4) = 2, bigomega(2) = 1, bigomega(1) = 0, hence a(36) = 4.
		

Crossrefs

Programs

  • Maple
    A073855 := proc(n)
        option remember;
        if n <=0 then
            0;
        else
            1+procname(numtheory[bigomega](n)) ;
        end if;
    end proc:
    seq(A073855(n),n=0..20) ; # R. J. Mathar, Jul 31 2017
  • Mathematica
    Table[-1 + Length@ NestWhileList[PrimeOmega, n, # > 0 &], {n, 0, 105}] (* Michael De Vlieger, Jul 29 2017 *)
  • PARI
    a(n)=if(n<=0,0,s=n; c=1; while(bigomega(s)>0,s=bigomega(s); c++); c)
    
  • PARI
    A073855(n) = if(!n,n,1+A073855(bigomega(n))); \\ Antti Karttunen, Jul 28 2017
    
  • PARI
    first(n) = my(v = vector(n-1)); v[1] = 1; for(i=2, #v, v[i] = 1 + v[bigomega(i)]); concat([0], v) \\ David A. Corneth, Jul 28 2017

Formula

a(n) = 1+A036430(n).
For n >= 1, a(n) = 1 + a(bigomega(n)). - Vladeta Jovovic, Jul 10 2004
With a(0) = 0 as the termination condition of the recurrence. - Antti Karttunen, Jul 28 2017

Extensions

More terms from Vladeta Jovovic, Jul 10 2004
Term a(0)=0 prepended by Antti Karttunen, Jul 28 2017

A287841 Number of iterations of number of distinct prime factors (A001221) needed to reach 1 starting at n (n is counted).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 01 2017

Keywords

Examples

			If n = 6 the trajectory is {6, 2, 1}. Its length is 3, thus a(6) = 3.
		

Crossrefs

Cf. A001221, A036430, A036459, A049108, A073855, A115658 (first occurrence), A246655 (positions of 2).

Programs

  • Mathematica
    f[n_] := Length[NestWhileList[ PrimeNu, n, # != 1 &]]; Array[f, 105]
    a[1] = 1; a[n_] := a[n] = a[PrimeNu[n]] + 1; Table[a[n], {n, 105}]
  • PARI
    A287841(n) = if(1==n,n,1+A287841(omega(n))); \\ Antti Karttunen, Nov 23 2017
    
  • Python
    from sympy import primefactors
    def a(n): return 1 if n==1 else a(len(primefactors(n))) + 1 # Indranil Ghosh, Jun 03 2017

Formula

a(n) = a(omega(n)) + 1 for n > 1, where omega() is the number of distinct prime factors.
Showing 1-3 of 3 results.