cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036505 Numerator of (n+1)^n/n!.

Original entry on oeis.org

1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
Offset: 0

Views

Author

Keywords

Comments

Also denominator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. - N. J. A. Sloane, Jul 31 2013

Crossrefs

Cf. A095996 (denominators).

Programs

  • GAP
    List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
    
  • Magma
    [Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
    
  • Maple
    a:=n -> numer((n+1)^n/factorial(n)):  A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
  • Mathematica
    CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
  • PARI
    my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
    
  • Sage
    [numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019

Formula

a(n) = A090878(n+1)/Sum_{k=0..n+1} (A128433(n+1)/A128434(n+1)). - Reinhard Zumkeller, Mar 03 2007
G.f.: -x*e^(-LambertW(-x))/((LambertW(-x)+1)*LambertW(-x)). - Vladimir Kruchinin, Feb 04 2013
A simpler g.f. is 1/(1 + LambertW(-x)). - Jean-François Alcover, Feb 04 2013