A036505 Numerator of (n+1)^n/n!.
1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
Programs
-
GAP
List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
-
Magma
[Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
-
Maple
a:=n -> numer((n+1)^n/factorial(n)): A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
-
Mathematica
CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
-
PARI
my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
-
Sage
[numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019
Formula
G.f.: -x*e^(-LambertW(-x))/((LambertW(-x)+1)*LambertW(-x)). - Vladimir Kruchinin, Feb 04 2013
A simpler g.f. is 1/(1 + LambertW(-x)). - Jean-François Alcover, Feb 04 2013
Comments