A025630 Duplicate of A036566.
1, 7, 8, 49, 56, 64, 343, 392, 448, 512, 2401, 2744, 3136, 3584, 4096, 16807, 19208
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
2.5^4 = 39.0625, and 41 is the next integer that is relatively prime to 1, 3, 7 and 16.
a:= proc(n) option remember; local l, m; l:= [seq(a(i), i=1..n-1)]; for m from ceil((5/2)^n) while ormap(x-> igcd(m, x)>1, l) do od; m end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 06 2022
A036567[1] = 3; A036567[q_] := With[{prev = A036567 /@ Range[q - 1]}, Block[{n = Ceiling[(5/2)^q]}, While[Nand @@ ((# == 1 &) /@ GCD[prev, n]), n++]; n]]; (* Morgan Owens, Oct 08 2020 *) Array[A036567, 10]
a036567(m)={my(v=vector(m)); for(n=1,m,my(b=ceil((5/2)^n));for(j=b,oo,my(g=1); for(k=1,n-1,if(gcd(j,v[k])>1,g=0;break));if(g,v[n]=j;break)));v}; a036567(28) \\ Hugo Pfoertner, Oct 15 2020
Take[7^#[[1]]*12^#[[2]]&/@Tuples[Range[0,10],2]//Union,40] (* Harvey P. Dale, Mar 05 2017 *) n = 10^6; Flatten[Table[7^i*12^j, {i, 0, Log[7, n]}, {j, 0, Log[12, n/7^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
from sympy import integer_log def A108238(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(integer_log(x//12**i,7)[0]+1 for i in range(integer_log(x,12)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025
First few rows of the array: 1, 5, 25, 125, ... 3, 15, 75, 375, ... 9, 45, 225, 1125, ... First few rows of the triangle are: 1; 3, 5; 9, 15, 25; 27, 45, 75, 125; ... Example: a(17) = 675 = (3,2) in the array, = 3^3 * 5^2.
Table[3^(n - k)*5^k, {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jun 06 2006 *)
Comments