cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A025630 Duplicate of A036566.

Original entry on oeis.org

1, 7, 8, 49, 56, 64, 343, 392, 448, 512, 2401, 2744, 3136, 3584, 4096, 16807, 19208
Offset: 1

Views

Author

Keywords

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A025669 Exponent of 7 (value of i) in n-th number of form 7^i*8^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A036566. Differs from A025581 at a(136).

A025675 Exponent of 8 (value of j) in n-th number of form 7^i*8^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A036566. Differs from A002262 at a(136).

A036567 Basic numbers used in Sedgewick-Incerpi upper bound for shell sort.

Original entry on oeis.org

1, 3, 7, 16, 41, 101, 247, 613, 1529, 3821, 9539, 23843, 59611, 149015, 372539, 931327, 2328307, 5820767, 14551919, 36379789, 90949471, 227373677, 568434193, 1421085473, 3552713687, 8881784201, 22204460497, 55511151233, 138777878081, 346944695197, 867361737989
Offset: 0

Views

Author

Keywords

Examples

			2.5^4 = 39.0625, and 41 is the next integer that is relatively prime to 1, 3, 7 and 16.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed, section 5.2.1, p. 91.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local l, m;
          l:= [seq(a(i), i=1..n-1)];
          for m from ceil((5/2)^n) while ormap(x-> igcd(m, x)>1, l) do od; m
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 06 2022
  • Mathematica
    A036567[1] = 3;
    A036567[q_] :=
    With[{prev = A036567 /@ Range[q - 1]},
      Block[{n = Ceiling[(5/2)^q]},
       While[Nand @@ ((# == 1 &) /@ GCD[prev, n]), n++];
       n]]; (* Morgan Owens, Oct 08 2020 *)
    Array[A036567, 10]
  • PARI
    a036567(m)={my(v=vector(m)); for(n=1,m,my(b=ceil((5/2)^n));for(j=b,oo,my(g=1); for(k=1,n-1,if(gcd(j,v[k])>1,g=0;break));if(g,v[n]=j;break)));v};
    a036567(28) \\ Hugo Pfoertner, Oct 15 2020

Formula

a(n) is the smallest number >= 2.5^n that is relatively prime to all previous terms in the sequence.

Extensions

Better description and more terms from Jud McCranie, Jan 05 2001
a(0)=1 prepended by Alois P. Heinz, Dec 04 2023

A108238 Numbers of the form (7^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 7, 12, 49, 84, 144, 343, 588, 1008, 1728, 2401, 4116, 7056, 12096, 16807, 20736, 28812, 49392, 84672, 117649, 145152, 201684, 248832, 345744, 592704, 823543, 1016064, 1411788, 1741824, 2420208, 2985984, 4148928, 5764801, 7112448
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[7^#[[1]]*12^#[[2]]&/@Tuples[Range[0,10],2]//Union,40] (* Harvey P. Dale, Mar 05 2017 *)
    n = 10^6; Flatten[Table[7^i*12^j, {i, 0, Log[7, n]}, {j, 0, Log[12, n/7^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • Python
    from sympy import integer_log
    def A108238(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//12**i,7)[0]+1 for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = (7*12)/((7-1)*(12-1)) = 14/11. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(7)*log(12)*n)) / sqrt(84). - Vaclav Kotesovec, Sep 26 2020

A120027 Triangle, generated from (3^(n-k) * 5^k) table.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 125, 81, 135, 225, 375, 625, 243, 405, 675, 1125, 1875, 3125, 729, 1215, 2025, 3375, 5625, 9375, 15625, 2187, 3645, 6075, 10125, 16875, 28125, 46875, 78125, 6561, 10935, 18225, 30375, 50625, 84375, 140625, 234375
Offset: 0

Views

Author

Gary W. Adamson, Jun 04 2006

Keywords

Comments

Row 1 of the array (3, 15, 75, 375, ...) = A005053, (3 * 5^n), deleting the "1".

Examples

			First few rows of the array:
  1,  5,  25,  125, ...
  3, 15,  75,  375, ...
  9, 45, 225, 1125, ...
First few rows of the triangle are:
   1;
   3,  5;
   9, 15, 25;
  27, 45, 75, 125;
  ...
Example: a(17) = 675 = (3,2) in the array, = 3^3 * 5^2.
		

Crossrefs

Programs

  • Mathematica
    Table[3^(n - k)*5^k, {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jun 06 2006 *)

Formula

Antidiagonals of the (3^i * 5^j) multiplication table, as an array.
From Boris Putievskiy, Jan 09 2013: (Start)
T(n,k) = 3^(k-1)*5^(n-1) n, k >0 read by antidiagonals.
a(n) = 3^(A004736(n)-1) * 5^(A002260(n)-1), n > 0, or
a(n) = 3^(j-1) * 5^(i-1), n > 0,
where i = n - t*(t+1)/2, j = (t*t + 3*t + 4)/2 - n, t = floor((-1+sqrt(8*n-7))/2). (End)
G.f.: 1/((1 - 3*x)(1 - 5*x*y)). - Ilya Gutkovskiy, Jun 03 2017

Extensions

More terms from Robert G. Wilson v, Jun 06 2006

A025725 Index of 7^n within sequence of numbers of form 7^i*8^j.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 136, 152, 169, 187, 206, 226, 247, 269, 292, 316, 341, 367, 394, 422, 451, 481, 511, 542, 574, 607, 641, 676, 712, 749, 787, 826, 866, 907, 949, 992, 1036, 1080, 1125, 1171, 1218, 1266, 1315, 1365, 1416
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025675. - R. J. Mathar, Jul 06 2025

Crossrefs

A025731 Index of 8^n within sequence of numbers of form 7^i*8^j.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 137, 155, 174, 194, 215, 237, 260, 284, 309, 335, 362, 390, 419, 449, 480, 513, 547, 582, 618, 655, 693, 732, 772, 813, 855, 898, 942, 987, 1033, 1081, 1130, 1180, 1231, 1283, 1336, 1390, 1445, 1501, 1558, 1616
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025669. - R. J. Mathar, Jul 06 2025

Crossrefs

Showing 1-9 of 9 results.