A036689 Product of a prime and the previous number.
2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1
Examples
2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index to sequences related to prime powers
Crossrefs
Programs
-
Haskell
a036689 n = a036689_list !! (n-1) a036689_list = zipWith (*) a000040_list $ map pred a000040_list -- Reinhard Zumkeller, Sep 17 2011
-
Magma
[ n*(n-1): n in PrimesUpTo(220) ]; // Bruno Berselli, Apr 11 2011
-
Maple
A036689 := proc(n) local p ; p := ithprime(n) ; p*(p-1) ; end proc: # R. J. Mathar, Apr 11 2011
-
Mathematica
Table[Prime[n] EulerPhi[Prime[n]], {n, 100}] (* Artur Jasinski, Jan 23 2008 *) Table[Prime[n] (Prime[n] - 1), {n, 1, 50}] (* Bruno Berselli, Apr 22 2014 *) #(#-1)&/@Prime[Range[50]] (* Harvey P. Dale, Sep 08 2019 *)
-
PARI
forprime(p=2,1e3,print1(p^2-p", ")) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
A036689(n) = ((p->(p-1)*p)(prime(n))); \\ Antti Karttunen, Dec 14 2024
-
Scheme
(define (A036689 n) (* (A000040 n) (- (A000040 n) 1))) ;; Antti Karttunen, May 01 2015
Formula
a(n) = prime(n) * (prime(n) - 1).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)
Extensions
Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020
Comments