cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036917 G.f.: (4/Pi^2)*EllipticK(4*x^(1/2))^2.

Original entry on oeis.org

1, 8, 88, 1088, 14296, 195008, 2728384, 38879744, 561787864, 8206324928, 120929313088, 1794924383744, 26802975999424, 402298219288064, 6064992788397568, 91786654611673088, 1393772628452578264, 21227503080738294464, 324160111169327247424
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 8*x + 88*x^2 +  1088*x^3 + 14296*x^5 + 195008*x^5 + ... - _Michael Somos_, May 29 2023
		

References

  • M. Petkovsek et al., "A=B", Peters, p. ix of second printing.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Haskell
    a036917 n = sum $ map
       (\k -> (a007318 (2*n-2*k) (n-k))^2 * (a007318 (2*k) k)^2) [0..n]
    -- Reinhard Zumkeller, May 24 2012
    
  • Mathematica
    a[n_] := (16 (n - 1/2)(2*n^2 - 2*n + 1)a[n - 1] - 256(n - 1)^3 a[n - 2])/n^3; a[0] = 1; a[1] = 8; Array[a, 19, 0] (* Or *)
    f[n_] := Sum[(Binomial[2 (n - k), n - k] Binomial[2 k, k])^2, {k, 0, n}]; Array[f, 19, 0] (* Or *)
    lmt = 20; Take[ 4^Range[0, 2 lmt]*CoefficientList[ Series[(4/Pi^2) EllipticK[4 x^(1/2)]^2, {x, 0, lmt}], x^(1/2)], lmt] (* Robert G. Wilson v *)
    a[n_] := HypergeometricPFQ[{1/2, 1/2, -n, -n}, {1, 1/2-n, 1/2-n}, 1] * 4^n * (2n-1)!!^2 / n!^2 (* Vladimir Reshetnikov, Mar 08 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, EllipticNomeQ[16*x]]^4, {x, 0, n}]; (* Michael Somos, May 30 2023 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, (binomial(2*n-2*k,n-k) *binomial(2*k,k))^2), ", ")) \\ G. C. Greubel, Oct 24 2017
    
  • PARI
    a(n) = if(n<0, 0, polcoeff(agm(1, sqrt(1 - 16*x + x*O(x^n)))^-2, n)); /* Michael Somos, May 29 2023 */

Formula

a(n) = (16*(n-1/2)*(2*n^2-2*n+1)*a(n-1)-256*(n-1)^3*a(n-2))/n^3.
a(n) = Sum_{k=0..n} (C(2 * (n-k), n-k) * C(2 * k, k))^2. [corrected by Tito Piezas III, Oct 19 2010]
a(n) = hypergeom([1/2, 1/2, -n, -n], [1, 1/2-n, 1/2-n], 1) * 4^n * (2n-1)!!^2 / n!^2. - Vladimir Reshetnikov, Mar 08 2014
a(n) ~ 2^(4*n+1) * log(n) / (n*Pi^2) * (1 + (4*log(2) + gamma)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 28 2015
G.f. y=A(x) satisfies: 0 = x^2*(16*x - 1)^2*y''' + 3*x*(16*x - 1)*(32*x - 1)*y'' + (1792*x^2 - 112*x + 1)*y' + 8*(32*x - 1)*y. - Gheorghe Coserea, Jul 03 2018
G.f.: 1 / AGM(1, sqrt(1 - 16*x))^2. - Vaclav Kotesovec, Oct 01 2019
It appears that a(n) is equal to the coefficient of (x*y*z*t)^n in the expansion of (1+x+y+z-t)^n * (1+x+y-z+t)^n * (1+x-y+z+t)^n * (1-x+y+z+t)^n. Cf. A000172. - Peter Bala, Sep 21 2021
G.f. y = A(x) satisfies 0 = x*(1 - 16*x)*(2*y''*y - y'*y') + 2*(1 - 32*x)*y*y' - 16*y*y. - Michael Somos, May 29 2023
Expansion of theta_3(0, q)^4 in powers of m/16 where the modulus m = k^2. - Michael Somos, May 30 2023
From Paul D. Hanna, Mar 25 2024: (Start)
G.f. ( Sum_{n>=0} binomial(2*n,n)^2 * x^n )^2.
G.f. Sum_{n>=0} binomial(2*n,n)^3 * x^n * (1 - 16*x)^n. (End)

Extensions

Replaced complicated definition via a formula with simple generating function provided by Vladeta Jovovic, Dec 01 2003. Thanks to Paul D. Hanna for suggesting this. - N. J. A. Sloane, Mar 25 2024