A037020 Numbers whose sum of proper (or aliquot) divisors is a prime.
4, 8, 21, 27, 32, 35, 39, 50, 55, 57, 63, 65, 77, 85, 98, 111, 115, 125, 128, 129, 155, 161, 171, 175, 185, 187, 189, 201, 203, 205, 209, 221, 235, 237, 242, 245, 265, 275, 279, 291, 299, 305, 309, 319, 323, 324, 325, 327, 335, 338, 341, 365, 371, 377, 381
Offset: 1
Examples
The aliquot divisors of 27 are 1, 3, and 9, whose sum is 13, a prime, so 27 is a term.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Paul Pollack, Some arithmetic properties of the sum of proper divisors and the sum of prime divisors, Illinois J. Math. 58:1 (2014), pp. 125-147.
Programs
-
Haskell
a037020 n = a037020_list !! (n-1) a037020_list = filter ((== 1) . a010051' . a001065) [1..] -- Reinhard Zumkeller, Nov 01 2015, Sep 15 2011
-
Magma
[n: n in [2..500] | IsPrime(SumOfDivisors(n)-n)]; // Vincenzo Librandi, Nov 01 2016
-
Mathematica
Select[Range[400],PrimeQ[DivisorSigma[1,#]-#]&] (* Harvey P. Dale, May 09 2011 *)
-
PARI
isok(n) = isprime(sigma(n) - n); \\ Michel Marcus, Nov 01 2016
Formula
Pollack proves that a(n) >> n log n. - Charles R Greathouse IV, Jun 28 2021
Comments