A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2.
1, 2, 6, 70, 12870, 601080390, 1832624140942590534, 23951146041928082866135587776380551750, 5768658823449206338089748357862286887740211701975162032608436567264518750790
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..11
- Aniruddha Biswas and Palash Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 2.
- Niklas G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015. See Eq. (3.15).
Programs
-
Maple
a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n): seq(a(n), n=0..8); # Alois P. Heinz, Jan 14 2017 # a:=n->sum(binomial(2^(n-1),i)^2,i=0..2^(n-1)); seq(a(n),n=0..8); a:=n->piecewise(n=0,1,binomial(2^n,2^(n-1))); seq(a(n),n=0..8); # Martin Renner, Jan 16 2017
-
Mathematica
Flatten[{1,Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* Vaclav Kotesovec, Nov 13 2014 *)
-
PARI
a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2) \\ Michel Marcus, Jun 09 2013
-
Python
from math import comb def A037293(n): return comb(1<
Chai Wah Wu, Dec 11 2024
Formula
a(n) = A001405(2^n). - Labos Elemer, Apr 11 2001
a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - Vaclav Kotesovec, Nov 13 2014
a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - Martin Renner, Jan 16 2017
a(n) = (2^(2^n)*(2^n + 2)*(1/2*(2^n + 1))!)/(sqrt(Pi)*(2^n + 1)*(1/2*(2^n + 2))!) = (2^(2^n)*(2^n + 2)*Gamma((2^n+3)/2))/(sqrt(Pi)*(2^n + 1)*Gamma(2^(n-1)+2)) for n > 0. - Alexander R. Povolotsky, Nov 19 2022
a(n) = 2 * A069954(n-1) for n > 0. - Tilman Piesk, Oct 11 2024
Extensions
More terms from Erich Friedman
Comments