cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2.

Original entry on oeis.org

1, 2, 6, 70, 12870, 601080390, 1832624140942590534, 23951146041928082866135587776380551750, 5768658823449206338089748357862286887740211701975162032608436567264518750790
Offset: 0

Views

Author

John Tromp, Dec 11 1999

Keywords

Comments

For n >= 1, a(n) is the number of n-variable balanced Boolean functions. A Boolean function is balanced if it takes the values 0 and 1 an equal number of times. - Aniruddha Biswas, Nov 05 2024

Crossrefs

Programs

  • Maple
    a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 14 2017
    #
    a:=n->sum(binomial(2^(n-1),i)^2,i=0..2^(n-1)); seq(a(n),n=0..8);
    a:=n->piecewise(n=0,1,binomial(2^n,2^(n-1))); seq(a(n),n=0..8); # Martin Renner, Jan 16 2017
  • Mathematica
    Flatten[{1,Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* Vaclav Kotesovec, Nov 13 2014 *)
  • PARI
    a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2)  \\ Michel Marcus, Jun 09 2013
    
  • Python
    from math import comb
    def A037293(n): return comb(1<Chai Wah Wu, Dec 11 2024

Formula

a(n) = A001405(2^n). - Labos Elemer, Apr 11 2001
a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - Vaclav Kotesovec, Nov 13 2014
a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - Martin Renner, Jan 16 2017
a(n) = (2^(2^n)*(2^n + 2)*(1/2*(2^n + 1))!)/(sqrt(Pi)*(2^n + 1)*(1/2*(2^n + 2))!) = (2^(2^n)*(2^n + 2)*Gamma((2^n+3)/2))/(sqrt(Pi)*(2^n + 1)*Gamma(2^(n-1)+2)) for n > 0. - Alexander R. Povolotsky, Nov 19 2022
a(n) = 2 * A069954(n-1) for n > 0. - Tilman Piesk, Oct 11 2024

Extensions

More terms from Erich Friedman