A038154 a(n) = n! * Sum_{k=0..n-2} 1/k!.
0, 0, 2, 12, 60, 320, 1950, 13692, 109592, 986400, 9864090, 108505100, 1302061332, 16926797472, 236975164790, 3554627472060, 56874039553200, 966858672404672, 17403456103284402, 330665665962403980, 6613313319248079980, 138879579704209680000
Offset: 0
Keywords
Examples
0=1*0+0, 2=2*0+2, 12=3*2+6, 60=4*12+12, 320 = 5*60+20, ... - _Gary Detlefs_, May 20 2010
Links
- Mehdi Hassani, Counting and computing by e, arXiv:math/0606613 [math.CO], 2006.
- J. Sawada and A. Williams, Successor rules for flipping pancakes and burnt pancakes, Preprint 2015.
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
Table[n!Sum[1/k!,{k,0,n-2}],{n,0,30}] (* Harvey P. Dale, Jun 04 2012 *)
-
PARI
main(size)=my(k); vector(size,n,(n-1)!*sum(k=0,n-3,1/k!)); \\ Anders Hellström, Jul 14 2015
Formula
a(n) = A007526(n) - n.
a(n) = floor(n!*exp(1))-n-1, n>0. - Vladeta Jovovic, Aug 25 2001
a(n) = n*a(n-1) + n*(n-1), for n>=3, a(2)=2 and a(3) = 12. - Ian Myers, Jul 19 2012
E.g.f.: exp(x)*x^2/(1 - x). - Ilya Gutkovskiy, Jan 26 2017
a(n) = 2*A038155(n). - Alois P. Heinz, Jan 26 2017
Comments