A038155 a(n) = (n!/2) * Sum_{k=0..n-2} 1/k!.
0, 0, 1, 6, 30, 160, 975, 6846, 54796, 493200, 4932045, 54252550, 651030666, 8463398736, 118487582395, 1777313736030, 28437019776600, 483429336202336, 8701728051642201, 165332832981201990, 3306656659624039990, 69439789852104840000
Offset: 0
References
- D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..449
- D. E. Knuth, TAOCP Vol. 4, Pre-fascicle 2b (generating all permutations).
- Hugo Pfoertner, FORTRAN implementation of Knuth's Algorithm L for lexicographic permutation generation.
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Graph Path
Programs
-
Maple
A038155:=n->(n!/2)*add(1/k!, k=0..n-2): seq(A038155(n), n=0..30); # Wesley Ivan Hurt, Apr 16 2016
-
Mathematica
RecurrenceTable[{a[0] == 0, a[n] == Sum[a[n - 1] + k, {k, 0, n - 1}]}, a, {n, 21}] (* Ilya Gutkovskiy, Apr 13 2016 *) Table[(n!/2) Sum[1/k!, {k, 0, n - 2}], {n, 0, 21}] (* Michael De Vlieger, Apr 13 2016 *) Table[1/2 E (n - 1) n Gamma[n - 1, 1], {n, 0, 20}] (* Eric W. Weisstein, Jun 04 2017 *) Table[If[n == 0, 0, Floor[n! E - n - 1]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 04 2017 *)
Formula
a(n) = 1/2*floor(n!*exp(1)-n-1), n>0. - Vladeta Jovovic, Aug 18 2002
E.g.f.: x^2/2*exp(x)/(1-x). - Vladeta Jovovic, Aug 25 2002
a(n) = Sum_{k=0..n-1} a(n-1) + k, a(0)=0. - Ilya Gutkovskiy, Apr 13 2016
a(n) = A038154(n)/2. - Alois P. Heinz, Jan 26 2017
Comments