A091314 Primes in A038397 (concatenate first n squares in reverse order).
41, 941, 196169144121100816449362516941
Offset: 1
Links
- M. Fleuren, Smarandache Back Concatenated Squares.
Crossrefs
Cf. A038397.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1229 is a term because, through 2p+1, 1229 -> 2459 -> 4919 -> 9839 and the chain ends here since 2*9839 + 1 = 11*1789 is composite.
isA059763 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p-1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 3 do pitr := 2*pitr+1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr+1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 100000 do p := ithprime(i) ; if isA059763(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008
2 is here because (2-1)/2 = 1/2 and 32*2+31 = 95 are not primes, while 2, 5, 11, 23, and 47 give a first-kind Cunningham chain of 5 primes which cannot be continued. 53639 is here because through <2p+1>, 53639 -> 107279 -> 214559 -> 429119 -> 858239 and the chain ends here (with this operator).
l5Q[n_]:=Module[{a=PrimeQ[(n-1)/2],b=PrimeQ[ NestList[2#+1&,n,5]]}, Join[{a},b]=={False,True,True,True,True,True,False}]; Select[Range[ 1300000],l5Q] (* Harvey P. Dale, Oct 14 2012 *)
a019521 n = a019521_list !! (n-1) a019521_list = f "" $ tail a000290_list where f xs (q:qs) = (read ys :: Integer) : f ys qs where ys = xs ++ show q -- Reinhard Zumkeller, Mar 01 2014
a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), n^2))) end: seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
def a(n): return int("".join(str(i*i) for i in range(1, n+1))) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jan 14 2021
89 is a term because (89-1)/2 = 44 and 64*89+63 = 5759 = 13*443 are composites, while 89, 179, 359, 719, 1439, and 2879 are primes. 1122659 is not a term because it initiates a chain of length 7. 4658939 is not a term because (4658939-1)/2 = 2329469 is prime. - _Sean A. Irvine_, Oct 09 2022
2311 is here because, through the operator <*2-1> of the chains of the second kind, 2311 -> 4621 -> 9241 -> 18481 and the chain ends here (with this operator).
6841 is here because: 6841 through <2p-1> -> 13681-> 27361-> 54721-> 109441 and the chain ends here since 2*109441-1=13*113*149 is composite.
isA110022 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p+1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 4 do pitr := 2*pitr-1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr-1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 200000 do p := ithprime(i) ; if isA110022(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008
1409 is here because, through the operator <2p+1> for chains of the first kind, 1409 -> 2819 -> 5639 -> 11279 and the chain ends here. 2131 is here because, through the operator <2p-1> for chains of the second kind, 2131 -> 4261 -> 8521 -> 17041 and the chain ends here.
nn=20;With[{c=Reverse[Range[nn]^3]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[ c,-n]]],{n,nn}]] (* Harvey P. Dale, Sep 28 2013 *)
Comments