A038548 Number of divisors of n that are at most sqrt(n).
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4
Offset: 1
Examples
a(4) = 2 since 4 = 2 * 2 = 4 * 1. Also A034178(4*4) = 2 since 16 = 4^2 - 0^2 = 5^2 - 3^2. - _Michael Somos_, May 11 2011 x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + ...
References
- George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, page 18, exer. 21, 22.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Cristina Ballantine and Mircea Merca, New convolutions for the number of divisors, Journal of Number Theory, 2016, vol. 170, pp. 17-34.
- Christopher Briggs, Y. Hirano, and H. Tsutsui, Positive Solutions to Some Systems of Diophantine Equations, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.4.
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT], 2014, (2.27).
- Madeline Locus Dawsey, Matthew Just and Robert Schneider, A "supernormal" partition statistic, arXiv:2107.14284 [math.NT], 2021. See Table 2 p. 21.
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6.
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Haskell
a038548 n = length $ takeWhile (<= a000196 n) $ a027750_row n -- Reinhard Zumkeller, Dec 26 2012 (C#) int A038548(int n) { System.Numerics.BigInteger erg = 0, i; for (i = 1; i * i <= n; i++) if (n % i == 0) erg++; return (int)erg; } // Frank Hollstein, Jan 08 2023
-
Maple
with(numtheory): A038548 := n->ceil(sigma[0](n)/2);
-
Mathematica
Table[ Floor[ (DivisorSigma[0, n] + 1)/2], {n, 105}] (* Robert G. Wilson v, Mar 02 2009 *) Table[Count[Divisors[n],?(#<=Sqrt[n]&)],{n,110}] (* _Harvey P. Dale, Jul 10 2021 *) Table[Sum[If[n > k*(k-1), 1, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, d*d <= n))} /* Michael Somos, Jan 25 2005 */
-
PARI
a(n)=ceil(numdiv(n)/2) \\ Charles R Greathouse IV, Sep 28 2012
-
Python
from sympy import divisor_count def A038548(n): return divisor_count(n)+1>>1 # Chai Wah Wu, Dec 19 2023
Formula
a(n) = ceiling(d(n)/2), where d(n) = number of divisors of n (A000005).
G.f.: Sum_{k>=1} x^(k^2)/(1-x^k). - Jon Perry, Sep 10 2004
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/2. - Christian G. Bower, Jun 06 2005 [corrected by Vaclav Kotesovec, Aug 19 2019]
a(n) = A034178(4*n). - Michael Somos, May 11 2011
2*a(n) = A161841(n). - R. J. Mathar, Mar 07 2021
a(n) = A000005(n) - A056924(n) = A056924(n) + A010052(n) = Sum_{d|n} A065043(d). - Antti Karttunen, Apr 17 2022
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Comments