cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089509 a(n) = Kronecker(7/n).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 0, 1, 1, -1, -1, 1, -1, 0, -1, 1, -1, 1, 1, -1, 0, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, 0, 1, 1, 1, -1, -1, -1, 0, -1, -1, -1, -1, 1, 1, 0, 1, -1, -1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 0, 1, 1, -1, -1, -1, -1, 0, -1, 1, -1, 1, 1, 1, 0, -1, -1, -1, 1, -1, 1, 0, 1, -1, 1, -1, -1, -1, 0, -1, 1, 1, -1, 1, -1, 0, -1, 1, -1, -1, 1, -1, 0, 1
Offset: 1

Views

Author

Benoit Cloitre, Jan 03 2004

Keywords

Crossrefs

Programs

  • Magma
    [KroneckerSymbol(7,n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
  • Mathematica
    Table[KroneckerSymbol[7, n], {n, 100}] (* Vincenzo Librandi, Aug 16 2016 *)
  • PARI
    a(n)=kronecker(7,n)
    

Formula

if n==0 (mod 7) a(n)=0; for p in=A003632 a(p)=-1; for p in A038878 a(p)=+1

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A035189 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 7.

Original entry on oeis.org

1, 2, 2, 3, 0, 4, 1, 4, 3, 0, 0, 6, 0, 2, 0, 5, 0, 6, 2, 0, 2, 0, 0, 8, 1, 0, 4, 3, 2, 0, 2, 6, 0, 0, 0, 9, 2, 4, 0, 0, 0, 4, 0, 0, 0, 0, 2, 10, 1, 2, 0, 0, 2, 8, 0, 4, 4, 4, 2, 0, 0, 4, 3, 7, 0, 0, 0, 0, 0, 0, 0, 12, 0, 4, 2, 6, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[7, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=7); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(7, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(7, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(8+3*sqrt(7)) / sqrt(7) = 2.0929097... . (End)
Multiplicative with a(7^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(7, p) = -1 (p is in A003632), and a(p^e) = e+1 if Kronecker(7, p) = 1 (p is in A038878 \ {7}). - Amiram Eldar, Nov 20 2023

A296934 Rational primes that decompose in the field Q(sqrt(7)).

Original entry on oeis.org

3, 19, 29, 31, 37, 47, 53, 59, 83, 103, 109, 113, 131, 137, 139, 149, 167, 193, 197, 199, 223, 227, 233, 251, 271, 277, 281, 283, 307, 311, 317, 337, 367, 373, 383, 389, 401, 419, 421, 439, 449, 457, 467, 479, 503, 523, 541, 557, 563, 569, 587, 607, 613
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Programs

A247874 Lesser of twin primes (p, q=p+2) such that 7 is a square mod p and mod q.

Original entry on oeis.org

29, 137, 197, 281, 419, 617, 641, 809, 1061, 1091, 1229, 1289, 1427, 1481, 1877, 1931, 2129, 2237, 2267, 2381, 2549, 2657, 2687, 2801, 2969, 3329, 3359, 3389, 3527, 3557, 3581, 3917, 4001, 4229, 4337, 4421, 4481, 4649, 4787, 5009, 5657, 5741, 5849, 5879, 6131, 6269, 6299, 6551, 6689, 7307
Offset: 1

Views

Author

Zak Seidov, Sep 25 2014

Keywords

Comments

Both p and p + 2 are terms in A038878.
All terms are congruent to {1, 25, 27} mod 28.

Examples

			7+29*1=36=6^2 and 7+31*3=100=10^2 hence 7 is a square mod 29 and mod 31.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[5,1000]], PrimeQ[# + 2] && JacobiSymbol[7, #] == JacobiSymbol[7, # + 2] == 1 &]
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(q=p+2) && issquare(Mod(7, p)) && issquare(Mod(7, q)), print1(p, ", ")););} \\ Michel Marcus, Sep 25 2014
Showing 1-4 of 4 results.