cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074230 Numbers n such that A089509(n)=1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 24, 25, 27, 29, 31, 32, 36, 37, 38, 47, 48, 50, 53, 54, 55, 57, 58, 59, 62, 64, 65, 72, 74, 75, 76, 81, 83, 85, 87, 93, 94, 96, 100, 103, 106, 108, 109, 110, 111, 113, 114, 115, 116, 118, 121, 124, 128, 130, 131, 137, 139
Offset: 1

Views

Author

Jon Perry, Sep 17 2002

Keywords

Comments

The original name was: Kronecker(7,y) == mu(gcd(7,y)).

Crossrefs

Cf. A089509.

Programs

  • Maple
    select(t -> numtheory:-jacobi(7,t)=1, [$1..1000]); # Robert Israel, Jul 24 2016
  • PARI
    for (x=1,200, for (y=1,200,if (kronecker(x,y) == moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y)))))

Extensions

Name simplified by Robert Israel, Jul 24 2016.

A175629 Legendre symbol (n,7).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 29 2010

Keywords

Comments

This represents a non-principal Dirichlet character modulo 7.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n).

Crossrefs

The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS.
Moebius transform of A035182.

Programs

  • Magma
    &cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018
    
  • Maple
    A := proc(n) numtheory[jacobi](n,7) ; end proc: seq(A(n),n=0..120) ;
  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{0,1,1,-1,1,-1},100] (* or *) PadRight[ {},100,{0,1,1,-1,1,-1,-1}] (* Harvey P. Dale, Aug 02 2013 *)
    Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *)
  • PARI
    a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019

Formula

a(n) = a(n+7).
|a(n)| = A109720(n).
a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6).
G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018

A215200 Triangle read by rows, Kronecker symbol (n-k|k) for n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 1, -1, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Peter Luschny, Aug 05 2012

Keywords

Comments

Signed version of A054521.

Examples

			Triangle begins:
  1,
  1,  0,
  1,  1,  0,
  1,  0,  1, 0,
  1, -1, -1, 1,  0,
  1,  0,  0, 0,  1, 0,
  1, -1,  1, 1, -1, 1,  0,
  1,  0, -1, 0, -1, 0,  1, 0,
  1,  1,  0, 1,  1, 0,  1, 1, 0,
  1,  0,  1, 0,  0, 0, -1, 0, 1, 0,
From _Jianing Song_, Dec 26 2018: (Start)
This sequence can also be arranged into a square array T(n,k) = Kronecker symbol(n|k) with n >= 0, k >= 1, read by antidiagonals:
  1  0  0  0  0  0  0 ... ((0|k) = A000007(k+1))
  1  1  1  1  1  1  1 ... ((1|k) = A000012)
  1  0 -1  0 -1  0 -1 ... ((2|k) = A091337)
  1 -1  0  1 -1  0 -1 ... ((3|k) = A091338)
  1  0  1  0  1  0  1 ... ((4|k) = A000035)
  1 -1 -1  1  0  1 -1 ... ((5|k) = A080891)
  1  0  0  0  1  0 -1 ... ((6|k) = A322796)
  1  1  1  1 -1  1  0 ... ((7|k) = A089509)
  ... (End)
		

References

  • Henri Cohen: A Course in Computational Algebraic Number Theory, p. 29.

Crossrefs

Rows of square array include: A000012, A091337, A091338, A000035, A080891, A322796, A089509.

Programs

  • Magma
    /* As triangle */ [[KroneckerSymbol(n-k, k):  k in [1..n]]: n in [1..21]]; // Vincenzo Librandi, Apr 24 2018
  • Maple
    A215200_row := n -> seq(numtheory[jacobi](n-k,k),k=1..n);
    for n from 1 to 13 do A215200_row(n) od;
  • Mathematica
    Column[Table[KroneckerSymbol[n - k, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Aug 06 2012 *)
  • PARI
    T(n,k) = kronecker(n-k, k);
    tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 24 2018
    
  • Sage
    def A215200_row(n): return [kronecker_symbol(n-k,k) for k in (1..n)]
    for n in (1..13): print(A215200_row(n))
    

A226162 a(n) = Kronecker Symbol (-5/n), n >= 0.

Original entry on oeis.org

0, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, -1, 0, 1, -1, -1, -1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, 1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, -1, 1, 1, 1, 0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 0, -1, -1, -1, 1, 0, -1, -1, 1, -1, 0, 1, -1, 1, 1, 0, -1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 29 2013

Keywords

Comments

The number of -1's among the four terms following the 0 at a(5*k), for k >= 0, is 1, 2, 3, 3, 1, 0, 3, 2, 2, 1, 4, 4, 0, 1, 3, 3, 1, 1, 3, 4, ...
See the Weisstein link, where it is stated that the period length is 0.
In general, the sequence {(k/n)} is not periodic if and only if k == 3 (mod 4). - Jianing Song, Dec 30 2018

Crossrefs

Cf. A035183 (inverse Moebius transform).
Sequences related to Kronecker symbols that do not form a Dirichlet character: this sequence {(-5/n)}, A034947 {(-1/n)}, A091338 {(3/n)}, A089509 {(7/n)}.
Cf. A080891 (5/n), A100047.

Programs

  • Maple
    0, seq(numtheory:-jacobi(-5, n), n=1..89); # Peter Luschny, Dec 30 2018
  • Mathematica
    Table[KroneckerSymbol[-5, n],{n,0,89}]
  • PARI
    a(n)=kronecker(-5,n); \\ Andrew Howroyd, Jul 23 2018

Formula

Completely multiplicative with a(2) = -1, a(5) = 0, a(p) = 1 if p == 1, 3, 7, 9 (mod 20), a(p) = -1 if p == 11, 13, 17, 19 (mod 20). - Jianing Song, Dec 30 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A091399 a(n) = Product_{ p | n } (1 + Legendre(7,p) ).

Original entry on oeis.org

1, 2, 2, 2, 0, 4, 1, 2, 2, 0, 0, 4, 0, 2, 0, 2, 0, 4, 2, 0, 2, 0, 0, 4, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 0, 4, 2, 4, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 1, 0, 0, 0, 2, 4, 0, 2, 4, 4, 2, 0, 0, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); L := proc(n,N) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N,t1[i][1])),i=1..nops(t1)); end; [seq(L(n,7),n=1..120)];
  • Mathematica
    a[1] = 1; a[n_] := Product[1+JacobiSymbol[7, p], {p, FactorInteger[n][[All, 1]]}];
    Array[a, 105] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    a(n)={my(f=factor(n)[,1]); prod(i=1, #f, 1 + kronecker(7, f[i]))} \\ Andrew Howroyd, Jul 23 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7*sqrt(7) * log(8+3*sqrt(7))/(4*Pi^2) = 1.298843... . - Amiram Eldar, Oct 17 2022
Showing 1-5 of 5 results.