A215283 Row sums of triangle A215200.
1, 1, 2, 2, 0, 2, 2, 0, 6, 2, 6, 0, 2, 4, 4, 8, 4, 0, 8, 0, 0, 2, 4, 0, 14, 6, 2, 0, -2, 4, 8, 0, 2, 4, 12, 12, 4, 6, 10, 0, 10, 4, 8, 0, 2, 4, 6, 0, 32, 2, 12, 0, 0, 2, 12, 0, 2, 2, 18, 0, 2, 8, 2, 32, 10, 8, 8, 0, 0, 4, 12, 0, -2, 10, 6, 0, 0, 4, 18, 0, 42
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> add(numtheory:-jacobi(n-k,k),k=1..n); # Robert Israel, Mar 11 2018
-
Mathematica
a[n_] := Sum[ KroneckerSymbol[n - k, k], {k, 1, n}]; Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Jul 02 2013 *)
-
PARI
a(n) = sum(k = 1, n, kronecker(n-k, k)); \\ Amiram Eldar, Nov 07 2024
-
Sage
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)] [sum(A215200_row(n)) for n in (1..81)]
Formula
a(n) = Sum_{k=1..n} (n-k | k) where (i | j) is the Kronecker symbol.
Comments