cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039300 Number of distinct quadratic residues mod 3^n.

Original entry on oeis.org

1, 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144, 66431, 199291, 597872, 1793614, 5380841, 16142521, 48427562, 145282684, 435848051, 1307544151, 3922632452, 11767897354, 35303692061, 105911076181, 317733228542, 953199685624
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit suffixes of base 3 squares.
In general, for any odd prime p, the number s of quadratic residues mod p^n is given by s = (p^(n+1) + p + 2)/(2p + 2) for even n and s = (p^(n+1) + 2*p + 1)/(2p + 2) for odd n, see A000224. - Lekraj Beedassy, Jan 07 2005

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 324.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (3^(n+1) +6 -(-1)^n)/8); # G. C. Greubel, Jul 14 2019
  • Magma
    [(3^(n+1) + 6 + (-1)^(n+1))/8: n in [0..30]]; // Vincenzo Librandi, Apr 21 2012
    
  • Maple
    A039300 := proc(n)
        floor((3^n+3)*3/8) ;
    end proc:
    seq(A039300(n),n=0..30) ; # R. J. Mathar, Sep 28 2017
  • Mathematica
    CoefficientList[Series[(1-x-3x^2)/((1-x)(1+x)(1-3x)),{x,0,30}],x] (* Vincenzo Librandi, Apr 21 2012 *)
    Table[Floor((3^n+3)*3/8),{n,0,30}] (* Bruno Berselli, Apr 21 2012 *)
    CoefficientList[Series[1/8 E^-x (-1 + 6 E^(2 x) + 3 E^(4 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    {a(n) = if(n<0, 0, 3^n*3\8 + 1)}; /* Michael Somos,Mar 27 2005 */
    
  • PARI
    {a(n) = if(n<1, n==0, 3*a(n-1) - 2 + n%2)}; /* Michael Somos, Mar 27 2005 */
    
  • Sage
    [(3^(n+1) +6 -(-1)^n)/8 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3*(3^n + 3)/8).
a(n) = A033113(n) + 1.
a(n) = (3^(n+1) + 6 + (-1)^(n+1))/8. - Lekraj Beedassy, Jan 07 2005
G.f.: (1 - x - 3*x^2)/((1 - x)*(1 + x)*(1 - 3*x)). - Michael Somos, Mar 27 2005
a(n) = 2*a(n-1) + 3*a(n-2) - 3 with n > 1, a(0) = 1, a(1) = 1. - Zerinvary Lajos, Dec 14 2008
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3). Vincenzo Librandi, Apr 21 2012
a(n) = A000224(3^n). - R. J. Mathar, Sep 28 2017
E.g.f.: (1/8)*exp(-x)*(-1+6*exp(2*x)+3*exp(4*x)). - Stefano Spezia, Sep 04 2018