A040007 Continued fraction for sqrt(11).
3, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3
Offset: 0
Examples
3.316624790355399849114932736... = 3 + 1/(3 + 1/(6 + 1/(3 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 02 2009
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 144.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Programs
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[11],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *) PadRight[{3},120,{6,3}] (* Harvey P. Dale, Jan 18 2025 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 27000); x=contfrac(sqrt(11)); for (n=0, 20000, write("b040007.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009
Formula
From Stefano Spezia, Jan 18 2025: (Start)
G.f.: 3*(1 + x + x^2)/(1 - x^2).
E.g.f.: 3*(2*cosh(x) + sinh(x) - 1). (End)
Comments