A040071 Continued fraction for sqrt(80).
8, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1
Offset: 0
Examples
8.9442719099991587856366946... = 8 + 1/(1 + 1/(16 + 1/(1 + 1/(16 + ...)))). - _Harry J. Smith_, Jun 09 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Crossrefs
Cf. A010532 (decimal expansion).
Programs
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[80],300] (* Vladimir Joseph Stephan Orlovsky, Mar 09 2011 *) PadRight[{8},120,{16,1}] (* Harvey P. Dale, Apr 16 2022 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(80)); for (n=0, 20000, write("b040071.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 09 2009
Formula
a(n) = 4^(1+(-1)^n) for n>0, a(0)=8. - Bruno Berselli, Dec 29 2015
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 16, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 15/2^s). (End)