cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A010532 Decimal expansion of square root of 80.

Original entry on oeis.org

8, 9, 4, 4, 2, 7, 1, 9, 0, 9, 9, 9, 9, 1, 5, 8, 7, 8, 5, 6, 3, 6, 6, 9, 4, 6, 7, 4, 9, 2, 5, 1, 0, 4, 9, 4, 1, 7, 6, 2, 4, 7, 3, 4, 3, 8, 4, 4, 6, 1, 0, 2, 8, 9, 7, 0, 8, 3, 5, 8, 8, 9, 8, 1, 6, 4, 2, 0, 8, 3, 7, 0, 2, 5, 5, 1, 2, 1, 9, 5, 9, 7, 6, 5, 7, 6, 5, 7, 6, 3, 3, 5, 1, 5, 1, 2, 9, 0, 9, 9, 8, 7, 8, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 8 followed by {1, 16} repeated. - Harry J. Smith, Jun 09 2009

Examples

			8.944271909999158785636694674925104941762473438446102897083588981642083....
		

Crossrefs

Cf. A040071 (continued fraction). - Harry J. Smith, Jun 09 2009

Programs

  • Mathematica
    RealDigits[Sqrt[80],10,120][[1]] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(80); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010532.txt", n, " ", d));  \\ Harry J. Smith, Jun 09 2009

Formula

From Amiram Eldar, Aug 02 2020: (Start)
Equals 10 * 2/sqrt(5) = 10 * Sum_{k>=0} (-1)^k * binomial(2*k,k)/16^k.
Equals 8 + Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1) * 16^k). (End)

Extensions

Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009

A067280 Number of terms in continued fraction for sqrt(n), excl. 2nd and higher periods.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 5, 3, 1, 2, 3, 3, 6, 5, 3, 1, 2, 3, 7, 3, 7, 7, 5, 3, 1, 2, 3, 5, 6, 3, 9, 5, 5, 5, 3, 1, 2, 3, 3, 3, 4, 3, 11, 9, 7, 13, 5, 3, 1, 2, 3, 7, 6, 7, 5, 3, 7, 8, 7, 5, 12, 5, 3, 1, 2, 3, 11, 3, 9, 7, 9, 3, 8, 6, 5, 13, 7, 5, 5, 3, 1, 2, 3, 3, 6, 11, 3, 7, 6, 3, 9, 9, 11, 17, 5, 5, 12, 5
Offset: 1

Views

Author

Frank Ellermann, Feb 23 2002

Keywords

Examples

			a(2)=2: [1,(2)+ ]; a(3)=3: [1,(1,2)+ ]; a(4)=1: [2]; a(5)=2: [2,(4)+ ].
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, table 1.

Crossrefs

Related sequences: 2 : A040000, ..., 44: A040037, 48: A040041, ..., 51: A040043, 56: A040048, 60: A040052, 63: A040055, ..., 66: A040057. 68: A040059, 72: A040063, 80: A040071.
Related sequences: 45: A010135, ..., 47: A010137, 52: A010138, ..., 55: A010141, 57: A010142, ..., 59: A010144. 61: A010145, 62: A010146. 67: A010147, 69: A010148, ..., 71: A010150.
Cf. A003285.

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A067280(n): return len((a := continued_fraction_periodic(0,1,n))[:1]+(a[1] if a[1:] else [])) # Chai Wah Wu, Jun 14 2022

Formula

a(n) = A003285(n) + 1. - Andrey Zabolotskiy, Jun 23 2020

Extensions

Name clarified by Michel Marcus, Jun 22 2020

A041143 Denominators of continued fraction convergents to sqrt(80).

Original entry on oeis.org

1, 1, 17, 18, 305, 323, 5473, 5796, 98209, 104005, 1762289, 1866294, 31622993, 33489287, 567451585, 600940872, 10182505537, 10783446409, 182717648081, 193501094490, 3278735159921, 3472236254411, 58834515230497, 62306751484908, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 16 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5 +3*(-1)^n)*Fibonacci(3*(n+1))/16 ); # G. C. Greubel, Jul 02 2019
    
  • Magma
    I:=[1,1,17,18]; [n le 4 select I[n] else 18*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
    
  • Maple
    with(numtheory): cf := cfrac(sqrt(80),25): seq(nthdenom(cf,n), n=0..24); # Peter Luschny, Jul 06 2019
  • Mathematica
    Denominator/@Convergents[Sqrt[80], 30] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 18 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,18,0]^n*[1;1;17;18])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
    
  • PARI
    a(n) = (5 + 3*(-1)^n)*fibonacci(3*(n+1))/16 \\ Georg Fischer, Jul 01 2019
    
  • Python
    from sympy import continued_fraction_convergents as convergents, continued_fraction_iterator as cf, sqrt, denom
    denominators = (denom(c) for c in convergents(cf(sqrt(80))))
    print([next(denominators) for  in range(30)]) # _Ehren Metcalfe, Jul 03 2019
  • Sage
    [(5 +3*(-1)^n)*fibonacci(3*(n+1))/16 for n in (0..30)] # G. C. Greubel, Jul 02 2019
    

Formula

G.f.: (1 + x - x^2) / (1 - 18*x^2 + x^4).
a(n) = 18*a(n-2) - a(n-4).
From Peter Bala, May 28 2014: (Start)
Let alpha = 2 + sqrt(5) and beta = 2 - sqrt(5) be the roots of the equation x^2 - 4*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n even, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n odd.
a(n) = A001076(n+1) for n even; a(n) = 1/4*A001076(n+1) for n odd.
a(n) = Product_{k = 1..floor(n/2)} ( 16 + 4*cos^2(k*Pi/(n+1)) ).
Recurrence equations: a(0) = 1, a(1) = 1 and for n >= 1, a(2*n) = 16*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = a(2*n) + a(2*n - 1). (End)
a(n) = (5 + 3*(-1)^n)*Fibonacci(3*(n+1))/16. - Ehren Metcalfe, Apr 15 2019

Extensions

First term 0 removed from b-file, formulas and programs by Georg Fischer, Jul 01 2019

A267319 Continued fraction expansion of phi^8, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

46, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

More generally, the ordinary generating function for the continued fraction expansion of phi^(2*k + 1), where phi = (1 + sqrt(5))/2, k = 1, 2, 3,... is floor(phi^(2*k + 1))/(1 - x), and for the continued fraction expansion of phi^(2*k) is (floor(phi^(2*k)) + x - x^2)/(1 - x^2).

Examples

			phi^8 = (47 + 21*sqrt(5))/2 = 46 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/...)))))).
		

Crossrefs

Cf. A001622.
Cf. continued fraction expansion of phi^k: A000012 (k = 1), A054977 (k = 2), A010709 (k = 3), A176260 (k = 4, for n>0), A010850 (k = 5), A040071 (k = 6, for n>0), A010868 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [46] cat &cat [[1, 45]^^50]; // Vincenzo Librandi, Jan 13 2016
  • Mathematica
    ContinuedFraction[(47 + 21 Sqrt[5])/2, 82]

Formula

G.f.: (46 + x - x^2)/(1 - x^2).
a(n) = 23 + 22*(-1)^n for n>0. - Bruno Berselli, Jan 18 2016
Showing 1-4 of 4 results.