cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A030432 Primes of form 10n+7.

Original entry on oeis.org

7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, 347, 367, 397, 457, 467, 487, 547, 557, 577, 587, 607, 617, 647, 677, 727, 757, 787, 797, 827, 857, 877, 887, 907, 937, 947, 967, 977, 997, 1087, 1097, 1117, 1187, 1217, 1237
Offset: 1

Views

Author

Keywords

Comments

Union of A132231 and A039949. - Ray Chandler, Apr 07 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Also primes of the form 5n+2 with positive n. - Danny Rorabaugh, Feb 20 2016
Intersection of A000040 and A017353. - Iain Fox, Dec 30 2017

Crossrefs

Cf. A030430 (10n+1), A030431 (10n+3), A030433 (10n+9).

Programs

  • Magma
    [n: n in [7..1240 by 10] | IsPrime(n)]; // Bruno Berselli, Apr 06 2011
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    is(n)=n%10==7 && isprime(n) \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    lista(nn) = forprime(p=7, nn, if(p%10==7, print1(p, ", "))) \\ Iain Fox, Dec 30 2017
    
  • Sage
    [10*n+7 for n in range(124) if is_prime(10*n+7)] # Danny Rorabaugh, Feb 20 2016

Formula

a(n) = 10*A102342(n) + 7.
a(n) ~ 4n log n. - Charles R Greathouse IV, Jul 01 2013

Extensions

Extended by Ray Chandler, Nov 07 2006

A045380 Primes congruent to 2 mod 5.

Original entry on oeis.org

2, 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, 347, 367, 397, 457, 467, 487, 547, 557, 577, 587, 607, 617, 647, 677, 727, 757, 787, 797, 827, 857, 877, 887, 907, 937, 947, 967, 977, 997, 1087, 1097, 1117, 1187, 1217, 1237
Offset: 1

Views

Author

Keywords

Crossrefs

Apart from the initial terms, essentially same as A030432 and A045357. Cf. A095022.

Programs

A215210 Primes congruent to {2, 5, 7} mod 11.

Original entry on oeis.org

2, 5, 7, 13, 29, 71, 73, 79, 101, 137, 139, 167, 181, 211, 227, 233, 269, 271, 277, 293, 313, 337, 359, 379, 401, 409, 431, 467, 491, 541, 557, 563, 577, 599, 601, 607, 643, 673, 709, 733, 739, 761, 797, 821, 827, 863, 887, 907, 929, 937, 953, 997, 1019, 1039
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 11 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[800]],MemberQ[{2, 5, 7},Mod[#,11]]&]

A215211 Primes congruent to {2, 5, 7} mod 13.

Original entry on oeis.org

2, 5, 7, 31, 41, 59, 67, 83, 109, 137, 163, 197, 223, 239, 241, 293, 317, 353, 379, 397, 421, 431, 449, 457, 499, 509, 577, 587, 613, 631, 683, 691, 709, 733, 743, 761, 769, 787, 811, 821, 839, 863, 941, 967, 977, 1019, 1021, 1097, 1123, 1151, 1201, 1229, 1237
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 13 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,13]]&]
    Select[Flatten[Table[13n+{2,5,7},{n,0,100}]],PrimeQ] (* Harvey P. Dale, May 10 2021 *)

A215212 Primes congruent to {2, 5, 7} mod 17.

Original entry on oeis.org

2, 5, 7, 19, 41, 53, 73, 107, 109, 211, 223, 257, 277, 311, 313, 347, 359, 379, 449, 461, 563, 617, 619, 631, 653, 719, 733, 787, 821, 823, 857, 937, 971, 991, 1039, 1061, 1093, 1129, 1163, 1229, 1231, 1277, 1297, 1367, 1399, 1433, 1447, 1481, 1549, 1571
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 17 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,17]]&]

A215213 Primes congruent to {2, 5, 7} mod 19.

Original entry on oeis.org

2, 5, 7, 43, 59, 83, 97, 157, 173, 197, 211, 233, 271, 311, 347, 349, 401, 439, 461, 463, 499, 577, 613, 653, 691, 727, 743, 857, 881, 919, 971, 1009, 1031, 1033, 1069, 1109, 1123, 1223, 1237, 1259, 1297, 1373, 1427, 1451, 1487, 1489, 1579, 1601, 1693
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 19 in {2, 5, 7} ];
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{2,5,7},Mod[#,19]]&]
Showing 1-6 of 6 results.