cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A030432 Primes of form 10n+7.

Original entry on oeis.org

7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, 347, 367, 397, 457, 467, 487, 547, 557, 577, 587, 607, 617, 647, 677, 727, 757, 787, 797, 827, 857, 877, 887, 907, 937, 947, 967, 977, 997, 1087, 1097, 1117, 1187, 1217, 1237
Offset: 1

Views

Author

Keywords

Comments

Union of A132231 and A039949. - Ray Chandler, Apr 07 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Also primes of the form 5n+2 with positive n. - Danny Rorabaugh, Feb 20 2016
Intersection of A000040 and A017353. - Iain Fox, Dec 30 2017

Crossrefs

Cf. A030430 (10n+1), A030431 (10n+3), A030433 (10n+9).

Programs

  • Magma
    [n: n in [7..1240 by 10] | IsPrime(n)]; // Bruno Berselli, Apr 06 2011
    
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    is(n)=n%10==7 && isprime(n) \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    lista(nn) = forprime(p=7, nn, if(p%10==7, print1(p, ", "))) \\ Iain Fox, Dec 30 2017
    
  • Sage
    [10*n+7 for n in range(124) if is_prime(10*n+7)] # Danny Rorabaugh, Feb 20 2016

Formula

a(n) = 10*A102342(n) + 7.
a(n) ~ 4n log n. - Charles R Greathouse IV, Jul 01 2013

Extensions

Extended by Ray Chandler, Nov 07 2006

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A045357 Primes congruent to {0, 2} mod 5.

Original entry on oeis.org

2, 5, 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277, 307, 317, 337, 347, 367, 397, 457, 467, 487, 547, 557, 577, 587, 607, 617, 647, 677, 727, 757, 787, 797, 827, 857, 877, 887, 907, 937, 947, 967, 977, 997, 1087, 1097, 1117, 1187, 1217
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes congruent to {2,5,7} mod 10. [Bruno Berselli, Aug 07 2012]

Crossrefs

Apart from the initial terms essentially same as A030432 and A045380.

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 5 in {0, 2} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[Prime@Range[210], MemberQ[{0, 2}, Mod[ #, 5]] &] (* Ray Chandler, Jun 29 2008 *)

Extensions

Extended by Ray Chandler, Nov 07 2006

A004616 Divisible only by primes congruent to 2 mod 5.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 17, 28, 32, 34, 37, 47, 49, 56, 64, 67, 68, 74, 94, 97, 98, 107, 112, 119, 127, 128, 134, 136, 137, 148, 157, 167, 188, 194, 196, 197, 214, 224, 227, 238, 254, 256, 257, 259, 268, 272, 274
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A045380 (primes congruent to 2 mod 5).

Programs

  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(n) | d mod 5 eq 2}]; // Bruno Berselli, Aug 11 2012
  • Mathematica
    ok[1] = True; ok[n_] := And@@ (Mod[#, 5] == 2 &)/@ FactorInteger[n][[All,1]]; Select[Range[2000],ok] (* Vincenzo Librandi, Aug 11 2012 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Aug 20 2012

A221981 Primes q = 4*p+1, where p == 2 (mod 5) is also prime.

Original entry on oeis.org

29, 149, 269, 389, 509, 1109, 1229, 1949, 2309, 2909, 3989, 4349, 5189, 5309, 6269, 6389, 7109, 7949, 8069, 9749, 10589, 10709, 11069, 11549, 12149, 12269, 13229, 13829, 14549, 15629, 16229, 17189, 17789, 18269, 19949, 20789, 22109, 22229, 24029, 24989, 25349, 25469, 25589, 26189, 26309, 28109, 28229, 28949, 29669, 30029, 30869, 31469, 32069, 33149, 34589, 34949, 36269, 36629, 36749, 37589
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

Moree (2012) says that Chebyshev observed that if q = 4p + 1 is prime, with prime p == 2 (mod 5), then 10 is a primitive root modulo q.
If the sequence is infinite, then Artin's conjecture ("every nonsquare integer n != -1 is a primitive root of infinitely many primes q") is true for n = 10.
The corresponding primes p are A221982.
The sequence is infinite under Dickson's conjecture, thus Dickson's conjecture implies Artin's conjecture for n = 10. - Charles R Greathouse IV, Apr 18 2013
Two conjectures: (a) These primes have primitive root 40; (b) if a(n)*8 + 1 is prime then it has primitive root 10. - Davide Rotondo, Dec 31 2024

Examples

			29 is a member because 29 = 4*7 + 1 and 7 == 2 (mod 5) are prime.
		

References

  • P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F9, pp. 377-380.

Crossrefs

Programs

  • Maple
    A221981:=n->`if`(isprime(4*n+1) and isprime(n) and n mod 5 = 2, 4*n+1, NULL): seq(A221981(n), n=1..10^4); # Wesley Ivan Hurt, Dec 11 2015
  • Mathematica
    Select[ Prime[ Range[4000]], Mod[(# - 1)/4, 5] == 2 && PrimeQ[(# - 1)/4] &]
  • PARI
    is(n)=n%20==9 && isprime(n) && isprime(n\4) \\ Charles R Greathouse IV, Apr 18 2013

Formula

a(n) = 4*A221982(n) + 1.
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 30 2024

A221982 Primes p == 2 (mod 5) for which 4*p+1 is also prime.

Original entry on oeis.org

7, 37, 67, 97, 127, 277, 307, 487, 577, 727, 997, 1087, 1297, 1327, 1567, 1597, 1777, 1987, 2017, 2437, 2647, 2677, 2767, 2887, 3037, 3067, 3307, 3457, 3637, 3907, 4057, 4297, 4447, 4567, 4987, 5197, 5527, 5557, 6007, 6247, 6337, 6367, 6397, 6547, 6577, 7027, 7057, 7237, 7417, 7507, 7717, 7867
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

The corresponding primes 4*p+1 are Chebyshev's subsequence A221981 of the primes with primitive root 10.

Examples

			7 is a member because 7 == 2 (mod 5) and 29 = 4*7 + 1 are both prime.
		

References

  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
  • R. K. Guy, Unsolved Problems in Number Theory, F9.

Crossrefs

Programs

  • Maple
    A221982:=proc(q)
    local n;
    for n from 1 to q do
    if isprime(n) and isprime(4*n+1) and (n mod 5)=2 then print(n) fi; od; end:
    A221982 (10000); # Paolo P. Lava, Feb 12 2013
  • Mathematica
    Select[ Prime[ Range[1000]], Mod[#, 5] == 2 && PrimeQ[4 # + 1] &]

Formula

a(n) = (A221981(n) - 1)/4.

A024895 Numbers k such that 5*k - 3 is prime.

Original entry on oeis.org

1, 2, 4, 8, 10, 14, 20, 22, 26, 28, 32, 34, 40, 46, 52, 56, 62, 64, 68, 70, 74, 80, 92, 94, 98, 110, 112, 116, 118, 122, 124, 130, 136, 146, 152, 158, 160, 166, 172, 176, 178, 182, 188, 190, 194, 196, 200, 218, 220, 224, 238, 244, 248, 256, 260, 262, 266, 274, 286, 290, 298, 314
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A045380 (associated primes).

Programs

A091117 Number of primes of the form 5k+2 less than 10^n.

Original entry on oeis.org

2, 7, 47, 309, 2412, 19622, 166212, 1440496, 12712315, 113764040, 1029518338, 9401997001
Offset: 1

Views

Author

Eric W. Weisstein, Dec 19 2003

Keywords

Comments

Computed by T. D. Noe, Dec 19 2003.

Crossrefs

Cf. A045380.

Extensions

a(10) from Robert G. Wilson v, Dec 22 2003
a(11)-a(12) from Amiram Eldar, Apr 12 2022
Showing 1-9 of 9 results.