cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067097 Floor[X/Y] where X = concatenation in increasing order of first n powers of 2 and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 20, 201, 2010, 201012, 20101226, 2010122457, 201012245610, 20101224560848, 2010122456084687, 201012245608468521, 201012245608468519453, 201012245608468519428723, 201012245608468519428463029, 2010122456084685194284602619644
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(6)= floor [ 248163264/123456] = floor[2010.13530326594090202177293] = 2010.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(2^Range[n])]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,20}] (* Harvey P. Dale, Dec 30 2018 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002
More terms from Harvey P. Dale, Dec 30 2018

A051639 Concatenation of 3^k, k = 0,..,n.

Original entry on oeis.org

1, 13, 139, 13927, 1392781, 1392781243, 1392781243729, 13927812437292187, 139278124372921876561, 13927812437292187656119683, 1392781243729218765611968359049, 1392781243729218765611968359049177147, 1392781243729218765611968359049177147531441
Offset: 0

Views

Author

Felice Russo, Nov 15 1999

Keywords

Examples

			139 belongs to the sequence because it is the concatenation of 3^0, 3^1 and 3^2.
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000

Crossrefs

Cf. A000244. - R. J. Mathar, Oct 10 2010
Cf. A045507.

Programs

  • Maple
    From R. J. Mathar, Oct 10 2010: (Start)
    cat2 := proc(a,b) dgsb := max(1,ilog10(b)+1) ; a*10^dgsb+b ; end proc:
    catL := proc(L) local a; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A051639 := proc(n) catL([seq(3^k,k=0..n)]) ; end proc: seq(A051639(n),n=0..20) ; (End)
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<0, 0, parse(cat(a(n-1), 3^n))) end:
    seq(a(n), n=0..12);  # Alois P. Heinz, May 30 2021
  • Mathematica
    With[{p3=3^Range[0,15]},Table[FromDigits[Flatten[IntegerDigits/@ Take[ p3,n]]],{n,15}]] (* Harvey P. Dale, Sep 13 2011 *)

Extensions

Terms n>=7 corrected by R. J. Mathar, Oct 10 2010

A381259 Numbers obtained by concatenating powers of 2, sorted into increasing order.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 16, 18, 21, 22, 24, 28, 32, 41, 42, 44, 48, 64, 81, 82, 84, 88, 111, 112, 114, 116, 118, 121, 122, 124, 128, 132, 141, 142, 144, 148, 161, 162, 164, 168, 181, 182, 184, 188, 211, 212, 214, 216, 218, 221, 222, 224, 228, 232, 241, 242, 244, 248, 256, 264
Offset: 1

Views

Author

Stefano Spezia, Feb 18 2025

Keywords

Comments

Take the list {2^i: i >= 0} and concatenate its terms (allowing multiple copies) in any order; then sort the result into increasing order.
The term a(32) = 128 is a power of 2 as well as the concatenation of several powers of 2. - Rémy Sigrist, Feb 20 2025

Examples

			11 is a term because it is the concatenation of 1 = 2^0 with itself;
12 is a term because it is the concatenation of 1 = 2^0 with 2 = 2^1;
32 is a term because it is equal to 2^5;
168 is a term because it is the concatenation of 16 = 2^4 with 8 = 2^3.
0 is not a term because it is not a power of 2.
		

Crossrefs

Supersequence of A028846.
Some subsequences: A000079, A045507, A178664.
Cf. A152242.

Programs

  • PARI
    \\ See Links section.

A386552 Concatenate powers of 10.

Original entry on oeis.org

1, 110, 110100, 1101001000, 110100100010000, 110100100010000100000, 1101001000100001000001000000, 110100100010000100000100000010000000, 110100100010000100000100000010000000100000000, 1101001000100001000001000000100000001000000001000000000
Offset: 0

Views

Author

Jason Bard, Jul 25 2025

Keywords

Comments

Binary version of A045507. Base-2 representation of A164894.
Concatenate first A000217(n+1) terms of A010054.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<0, 0, parse(cat(a(n-1), 10^n)))
        end:
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 28 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n - 1]*10^(n+1) + 10^n; Table[a[n], {n, 0, 9}]
  • Python
    def A386552(n): return 10**n*sum(10**(k*((n<<1)-k+1)>>1) for k in range(n+1)) # Chai Wah Wu, Aug 05 2025

Formula

a(n) = Sum_{k=1..n+1} 10^A133082(k,n+2).
a(n) = A101305(n) + 10^A000096(n).
For n >= 1, a(n) = 10^(n+1)*a(n-1)+10^n.
Number of digits in a(n) is A000217(n+1).
Showing 1-4 of 4 results.