cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A373942 Indices of records in A045537.

Original entry on oeis.org

0, 2, 11, 12, 15, 102, 104, 105, 140, 177, 188, 380, 1003, 1004, 1011, 1038, 1174, 1241, 1247, 1471, 1605, 1611, 10004, 10044, 10058, 10673, 11643, 31160, 100005, 100009, 100041, 103546, 113532, 125320, 131236, 138000, 350000, 1000006, 1000070, 1000852, 1000950
Offset: 1

Views

Author

Michael S. Branicky, Jun 23 2024

Keywords

Crossrefs

Cf. A045537, A373337 (records).

A373337 Records in A045537.

Original entry on oeis.org

2, 5, 11, 14, 26, 28, 31, 50, 58, 59, 71, 72, 98, 107, 148, 166, 170, 172, 173, 211, 221, 223, 546, 549, 601, 616, 704, 716, 884, 1152, 1774, 1826, 1847, 1976, 1980, 2213, 2494, 3561, 4587, 4615, 4691, 5110, 5196, 5790, 5810, 6070, 6198, 6255, 6648, 6655, 6697
Offset: 1

Views

Author

Gonzalo Martínez, Jun 01 2024

Keywords

Comments

A045537(n) is the exponent of the least perfect power of n containing n as a substring. As n grows, larger integers are recorded.

Examples

			a(1) = A045537(0) = 2.
a(2) = A045537(2) = 5.
a(3) = A045537(11) = 11.
a(4) = A045537(12) = 14.
a(5) = A045537(15) = 26.
a(6) = A045537(102) = 28.
		

Crossrefs

Extensions

a(33)-a(37) from Michel Marcus, Jun 04 2024
a(38)-a(49) from Michael S. Branicky, Jun 05 2024
a(50)-a(51) from Jinyuan Wang, Jun 17 2025

A051248 n^a(n) is the smallest power of n (with a(n) > 1) which starts with n.

Original entry on oeis.org

2, 8, 18, 6, 24, 10, 20, 11, 22, 2, 26, 14, 10, 8, 92, 6, 166, 5, 19, 11, 60, 39, 48, 51, 94, 42, 467, 86, 14, 66, 58, 3, 5268, 33, 58, 10, 45, 70, 23, 6, 205, 70, 31, 15, 50, 84, 248, 70, 72, 94, 107, 170, 30, 10139, 182, 136, 87, 318, 49, 10, 178, 237, 295, 99, 17, 206
Offset: 1

Views

Author

Keywords

Comments

A070327(n) = n^a(n) for n > 1. - Reinhard Zumkeller, Sep 29 2011
The largest of the first 10000 terms is a(1955) = 119589011. - Giovanni Resta, May 27 2016

Examples

			2^8 = 256 begins with 2, and 2^k does not begin with 2 for any smaller integer k > 1, so a(2) = 8.
		

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf)
    a051248 n = 2 + length
       (takeWhile (not . (show n `isPrefixOf`) . show) $ iterate (* n) (n^2))
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Mathematica
    f[n_]:=Module[{i=2},While[Take[IntegerDigits[n^i],IntegerLength[n]] != IntegerDigits[n],i++];i]; Array[f,70] (* Harvey P. Dale, Oct 04 2011 *)
  • Python
    from itertools import count
    def a(n):
        s = str(n)
        return next(e for e in count(2) if str(n**e).startswith(s))
    print([a(n) for n in range(1, 33)]) # Michael S. Branicky, Feb 23 2025

Extensions

More terms from Jud McCranie

A104782 Smallest n^e (e>1) containing n in decimal representation.

Original entry on oeis.org

1, 32, 243, 64, 25, 36, 16807, 32768, 729, 100, 285311670611, 1283918464548864, 137858491849, 1475789056, 3787675244106352329254150390625, 16777216, 827240261886336764177, 1889568, 116490258898219, 3200000, 85766121
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2005

Keywords

Comments

a(n) = n^A045537(n).

Crossrefs

Programs

  • Python
    from itertools import count
    def a(n):
        s = str(n)
        return next(n**e for e in count(2) if s in str(n**e))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 23 2025

A070327 Smallest nontrivial power of n starting with n and greater than n.

Original entry on oeis.org

256, 387420489, 4096, 59604644775390625, 60466176, 79792266297612001, 8589934592, 984770902183611232881, 100, 1191817653772720942460132761, 1283918464548864, 137858491849, 1475789056
Offset: 2

Views

Author

Amarnath Murthy, May 11 2002

Keywords

Comments

a(n) = n ^ A051248(n). - Reinhard Zumkeller, Sep 29 2011

Crossrefs

Programs

  • Python
    from itertools import count
    def a(n):
        s = str(n)
        return next(n**e for e in count(2) if str(n**e).startswith(s))
    print([a(n) for n in range(2, 16)]) # Michael S. Branicky, Feb 23 2025

Formula

f[n_] := Block[{k = 2, s = ToString[n]}, While[ StringPosition[ ToString[n^k], s, 1] != {{1, Integer_}}, k++ ]; n^k]; Table[ f[n], {n, 2, 10}]

Extensions

Edited by Robert G. Wilson v, May 14 2002
The 15th term is too large to include.

A086064 In decimal representation: smallest k>1 such that n is a substring of n*k.

Original entry on oeis.org

2, 10, 6, 10, 6, 3, 6, 10, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Comments

1 < a(n) <= 10; 4, 7 and 8 do not occur.

Crossrefs

Cf. A045537.

Programs

  • Python
    def a(n):
        s = str(n)
        return next(k for k in range(2, 11) if s in str(n*k))
    print([a(n) for n in range(71)]) # Michael S. Branicky, Feb 23 2025

Formula

a(n) = A087217(n)/n for n>0. - Reinhard Zumkeller, Aug 26 2003

A074250 Smallest p>1 for which n^p ends in n, or -1 if no such p exists. The smallest p for which n is a p-morphic number.

Original entry on oeis.org

2, 5, 5, 3, 2, 2, 5, 5, 3, -1, 11, 21, 21, -1, -1, 6, 21, -1, 11, -1, 6, -1, 21, 3, 2, -1, 21, 21, 11, -1, 11, 5, 21, -1, -1, 6, 21, -1, 11, -1, 6, -1, 5, 11, -1, -1, 21, 21, 3, -1, 3, 21, 21, -1, -1, 6, 5, -1, 11, -1, 6, -1, 21, 11, -1, -1, 21, 5, 11, -1, 11, 21, 21, -1, 3, 2, 21, -1, 11, -1, 6, -1, 21, 11, -1, -1, 21, 21, 11, -1, 11, 21, 5, -1
Offset: 1

Views

Author

Zak Seidov, Sep 20 2002

Keywords

Comments

For n < 201, 83 numbers cannot be p-morphic numbers, while 116 numbers can be p-morphic number with smallest p varying from, e.g., p(5)=3 to p(103)=101. The smallest power p>1 for which n^p has n somewhere (not necessarily at the end!) in its decimal representation is A045537. If positive, the values of p in A045537 are smaller than p in this sequence.

Examples

			a(12) = 21 because 12^21 is the smallest power (>1) of 12 that ends in 12 (that, is 12 is a 21-morphic number); a(14) = -1 because there is no power (>1) of 14 that ends in 14 (that is, 14 cannot be any p-morphic number).
		

Crossrefs

Cf. A045537.

Programs

  • Mathematica
    SelectFirst[Range[2, 120], Function[k, Mod[#^k, 10^IntegerLength@ #] == #]] & /@ Range@ 200 /. n_ /; MissingQ@ n -> -1 (* Michael De Vlieger, Dec 02 2015, Version 10 *)

A373203 a(n) = minimum k>1 such that n^k contains all distinct decimal digits of n.

Original entry on oeis.org

2, 2, 5, 5, 3, 2, 2, 5, 5, 3, 2, 2, 3, 5, 4, 6, 5, 5, 5, 7, 5, 3, 4, 7, 3, 2, 8, 2, 5, 3, 5, 4, 3, 3, 3, 6, 6, 5, 4, 3, 3, 6, 7, 4, 3, 4, 4, 4, 4, 3, 2, 3, 7, 5, 3, 2, 3, 5, 5, 3, 2, 3, 5, 2, 2, 3, 2, 3, 4, 5, 5, 3, 3, 3, 2, 3, 2, 5, 5, 5, 5
Offset: 0

Views

Author

James C. McMahon, May 27 2024

Keywords

Examples

			For n=12, a(12)=3 because 12^3=1728 contains all decimal digits of n. Compare to A253600(12)=2 because 12^2=144 contains any digit of n.
		

Crossrefs

Programs

  • Mathematica
    seq={}; Do[k=1;Until[ContainsAll[IntegerDigits[n^k],IntegerDigits[n] ],k++];AppendTo[seq,k] ,{n,0,80}];seq
  • PARI
    a(n) = my(k=2, d=Set(digits(n))); while(setintersect(Set(digits(n^k)), d) != d, k++); k; \\ Michel Marcus, Jun 01 2024
  • Python
    from itertools import count
    def a(n):
        s = set(str(n))
        return next(k for k in count(2) if s <= set(str(n**k)))
    print([a(n) for n in range(81)]) # Michael S. Branicky, May 27 2024
    

Formula

A253600(n) <= a(n) <= A045537(n). - Michael S. Branicky, May 28 2024
A111442(n) = n^a(n).

A086063 a(n) = if n<=1 then 1 else smallest k>1 such that in binary representation n is contained in n^k.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 3, 2, 3, 3, 5, 3, 4, 3, 3, 2, 3, 3, 6, 3, 6, 5, 3, 3, 5, 5, 2, 3, 3, 3, 3, 2, 3, 3, 6, 3, 8, 6, 3, 3, 2, 9, 4, 5, 6, 5, 5, 3, 5, 5, 4, 5, 6, 2, 5, 3, 5, 3, 6, 3, 6, 3, 3, 2, 3, 3, 6, 3, 7, 6, 10, 3, 9, 11, 5, 7, 8, 4, 5, 3, 9, 2, 8, 9, 7, 4, 6, 5, 6, 6, 3, 5, 5, 5, 5, 3, 5, 5, 3, 5, 9, 11, 7
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Comments

A094543(n) = n^a(n).

Examples

			n=6: 6='110' is not contained in 6^2='100100', but in 6^3='11011000', therefore a(6)=3.
		

Crossrefs

Extensions

Extended and corrected by Reinhard Zumkeller, May 08 2004

A239134 Smallest k such that n^k contains k as a substring in its decimal representation.

Original entry on oeis.org

1, 6, 7, 6, 2, 6, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 4, 2, 3, 2, 4, 2, 4, 3, 7, 1, 2, 3, 3, 2, 2, 3, 5, 2, 6, 1, 8, 4, 4, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 2, 4, 3, 6, 1, 3, 5, 6, 2, 4, 3, 2, 3, 3, 1, 3, 2, 6, 2, 3, 2, 6, 2, 4, 1, 2, 4, 4
Offset: 1

Views

Author

Derek Orr, Mar 10 2014

Keywords

Comments

It seems very likely a(n) < 10 for all n (even stronger, a(n) < 9 for all n).
It also seems very likely a(n) = {1,2,3} for sufficiently large n.
Counterexample: a(10^d - 2) = 6 for d >= 2. - Robert Israel, Sep 16 2024

Examples

			5^1 = 5 does not contain a 1 but 5^2 = 25 does contain a 2 so a(5) = 2.
7^1 = 7 does not contain a 1, 7^2 = 49 does not contain a 2, but 7^3 = 343 does contain a 3 so a(7) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      for k from 1 to 9 do
        if member(k,convert(n^k,base,10)) then return k fi
      od;
      FAIL
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 16 2024
  • Mathematica
    a[n_] := Block[{k=1}, While[{} == StringPosition[ ToString[n^k], ToString[k]], k++]; k]; Array[a, 84] (* Giovanni Resta, Mar 11 2014 *)
    sk[n_]:=Module[{k=1},While[SequenceCount[IntegerDigits[n^k],IntegerDigits[k]] == 0,k++];k]; Array[sk,90] (* Harvey P. Dale, May 12 2022 *)
  • Python
    def Sub(x):
      for n in range(10**3):
        if str(x**n).find(str(n)) > -1:
          return n
    x = 1
    while x < 10**3:
      print(Sub(x))
      x += 1

Formula

a(A011531(k))=1, any k.
a(10*n) = a(n) if a(n) < 10. - Robert Israel, Sep 16 2024
Showing 1-10 of 13 results. Next