A045899 Numbers k such that k+1 and 3*k+1 are perfect squares.
0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080, 3371344269872647091408
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..870
- A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).
- A. Dujella and A. Pethoe, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
- A. Dujella, The Problem of Diophantus and Davenport, References
- A. Dujella, Publications of Andrej Dujella
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6
- P. Gibbs, 1,3,8,120 ... A Diophantine Problem
- P. Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Programs
-
Mathematica
f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *) Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x,0,50}], x]] (* G. C. Greubel, Jun 07 2017 *) LinearRecurrence[{15,-15,1},{0,8,120},20] (* Harvey P. Dale, Jul 14 2024 *)
-
PARI
x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017
Formula
a(n) = A046184(n+1) - 1.
a(n) = 14*a(n-1) - a(n-2) + 8.
a(n) = ((2 + sqrt(3))*(7 + 4*sqrt(3))^n + (2 - sqrt(3))*(7 - 4*sqrt(3))^n - 4)/6. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006
a(n) = 8*A076139(n-1) = 4*A217855(n-1) = 2*A123480(n-1) = 8/3*A076140(n-1). - Peter Bala, Dec 31 2012
From Colin Barker, Jul 30 2013: (Start)
G.f.: -8*x^2 / ((x - 1)*(x^2 - 14*x + 1)).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). (End)
E.g.f.: (-4*exp(x) + (2 + sqrt(3))*exp((7-4*sqrt(3))*x) + (2 - sqrt(3))*exp((7+4*sqrt(3))*x))/6. - Ilya Gutkovskiy, Apr 28 2016
Comments