cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A062691 Triangular numbers that contain exactly 2 different digits.

Original entry on oeis.org

10, 15, 21, 28, 36, 45, 78, 91, 171, 300, 595, 990, 1711, 2211, 3003, 5050, 5151, 5565, 5995, 6555, 8778, 10011, 66066, 222111, 255255, 333336, 500500, 600060, 828828, 887778, 1188111, 5656566, 22221111, 50005000, 51151555, 88877778, 2222211111, 5000050000
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

For n > 2, A309597(n) is a term. - Seiichi Manyama, Sep 15 2019
The other known infinite families of terms are A037156(n) for n > 1, A319170(n), and A383942(n). - David Radcliffe, Aug 25 2025

Examples

			300 is triangular and contains the digits 0 and 3.
		

Crossrefs

Cf. A000217, A045914 (all digits the same), A213516, A213518, A309597.

Programs

  • Mathematica
    Select[Accumulate[Range[14000]],Count[DigitCount[#],Except[0]]==2&] (* Harvey P. Dale, Nov 27 2011 *)
  • PARI
    for(k=0, 1e5, if(#Set(digits(j=k*(k+1)/2))==2, print1(j", "))) \\ Seiichi Manyama, Sep 15 2019

A118668 Number of distinct digits needed to write the n-th triangular number in decimal representation.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 1, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 3, 4, 4, 3, 4, 2, 3, 4, 4, 4, 3, 3, 4, 3, 4, 3, 2, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 2, 2, 3, 3, 4
Offset: 0

Views

Author

Reinhard Zumkeller, May 19 2006

Keywords

Comments

0 < a(n) <= 10;
a(n) = A043537(A000217(n)).

Examples

			n=99: 99*(99+1)/2 = 4950 -> a(99) = #{0,4,5,9} = 4;
see A119033 for an overview of sequences with terms composed of not more than 3 distinct digits.
n=100: 100*(100+1)/2 = 5050 -> a(100) = #{0,5} = 2;
		

Crossrefs

Programs

  • Haskell
    a118668 = a043537 . a000217
    a118668_list = map a043537 a000217_list
    -- Reinhard Zumkeller, Jul 11 2015
  • Mathematica
    Length[Union[IntegerDigits[#]]]&/@Accumulate[Range[0,110]] (* Harvey P. Dale, Jul 23 2012 *)

A213516 Triangular numbers having only 1 or 2 different digits in base 10.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 171, 300, 595, 666, 990, 1711, 2211, 3003, 5050, 5151, 5565, 5995, 6555, 8778, 10011, 66066, 222111, 255255, 333336, 500500, 600060, 828828, 887778, 1188111, 5656566, 22221111, 50005000, 51151555, 88877778
Offset: 1

Views

Author

T. D. Noe, Jun 21 2012

Keywords

Comments

The list of triangular numbers containing only one digit (A045914) is finite. This list is infinite because numbers like 8888777778, 222222111111, and 500000500000 occur an infinite number of times.
A309597 is a subsequence. - Seiichi Manyama, Sep 14 2019

Crossrefs

Cf. A119033 (has list of sequences related to digits in triangular numbers).

Programs

  • Magma
    [n*(n+1)/2: n in [0..10^5] | #Set(Intseq(n*(n+1) div 2)) le 2]; // Bruno Berselli, Oct 27 2012
  • Mathematica
    t = {}; Do[tri = n*(n+1)/2; If[Length[Union[IntegerDigits[tri]]] <= 2, AppendTo[t, tri]], {n, 0, 10^5}]; t
    Select[Accumulate[Range[0,20000]],Count[DigitCount[#],0]>7&] (* Harvey P. Dale, Sep 03 2020 *)

A241787 Triangular numbers which have one or more occurrences of exactly four different digits.

Original entry on oeis.org

1035, 1275, 1326, 1378, 1485, 1540, 1596, 1653, 1830, 1953, 2016, 2145, 2346, 2415, 2485, 2701, 2850, 3081, 3160, 3240, 3486, 3570, 3741, 3916, 4095, 4186, 4278, 4371, 4560, 4753, 4851, 4950, 5460, 5671, 6105, 6328, 6903, 7021, 7140, 7260, 7381, 7503, 8256
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 10153.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[200]],Count[DigitCount[#],0]==6&] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    s=[]; for(n=0, 300, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==4, s=concat(s, n*(n+1)/2))); s

A241788 Triangular numbers which have one or more occurrences of exactly five different digits.

Original entry on oeis.org

10296, 12403, 13695, 14028, 14365, 14706, 16290, 17205, 19306, 19503, 21736, 21945, 23871, 24310, 24531, 24753, 24976, 27495, 29403, 30628, 30876, 32640, 32896, 34716, 34980, 37128, 37401, 37950, 39621, 40186, 41328, 41905, 42195, 43071, 43956, 46971, 47586
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 100576.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 500, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==5, s=concat(s, n*(n+1)/2))); s

A241789 Triangular numbers which have one or more occurrences of exactly six different digits.

Original entry on oeis.org

102378, 103285, 104653, 106953, 108345, 109278, 109746, 120786, 124750, 132870, 135460, 137026, 138075, 150426, 152076, 154290, 158203, 162735, 168490, 170236, 174936, 178503, 189420, 190653, 194376, 197506, 198765, 203841, 205761, 215496, 219453, 231540
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 1004653.

Crossrefs

Programs

  • Mathematica
    Select[Table[(n(n+1))/2,{n,447,681}],Length[Union[ IntegerDigits[ #]]] == 6&] (* Harvey P. Dale, Feb 17 2018 *)
  • PARI
    s=[]; for(n=0, 800, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==6, s=concat(s, n*(n+1)/2))); s

A241790 Triangular numbers which have one or more occurrences of exactly seven different digits.

Original entry on oeis.org

1024596, 1047628, 1053426, 1069453, 1073845, 1078246, 1203576, 1234806, 1345620, 1360425, 1362075, 1386945, 1390278, 1405326, 1430586, 1439056, 1462905, 1486950, 1493856, 1547920, 1549680, 1590436, 1602945, 1624503, 1642578, 1679028, 1684530, 1693720
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 10149765.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 2500, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==7, s=concat(s, n*(n+1)/2))); s

A241791 Triangular numbers which have one or more occurrences of exactly eight different digits.

Original entry on oeis.org

10348975, 10623745, 10725396, 10869453, 10934826, 12347965, 12357906, 12487503, 12647935, 12673095, 12784096, 13862745, 14756028, 14826735, 15237960, 15298746, 15304278, 15879430, 16247850, 16384950, 17084935, 17502486, 17543926, 17829406
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 100642578.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[7000]],Length[Union[IntegerDigits[#]]]==8&] (* Harvey P. Dale, Feb 09 2019 *)
  • PARI
    s=[]; for(n=0, 7000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==8, s=concat(s, n*(n+1)/2))); s

A241792 Triangular numbers which have one or more occurrences of exactly nine different digits.

Original entry on oeis.org

102738945, 120784653, 120893475, 124875306, 126794850, 129854670, 137904528, 142087653, 143287056, 147069825, 149826705, 152783940, 153694278, 160249753, 162495378, 168370425, 173249805, 189725460, 192540876, 193405278, 197438256, 207193546, 230469715
Offset: 1

Views

Author

Colin Barker, Apr 28 2014

Keywords

Comments

The first term having a repeated digit is 1004976528.

Crossrefs

Programs

  • PARI
    s=[]; for(n=0, 40000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==9, s=concat(s, n*(n+1)/2))); s

A241812 Triangular numbers which have one or more occurrences of exactly ten different digits.

Original entry on oeis.org

1062489753, 1239845706, 1256984730, 1520843976, 1539264870, 1597283460, 1684930275, 1952843760, 1957346028, 1978236450, 2197480365, 2367098415, 2418079653, 2503948761, 2634980715, 2718609453, 2735891406, 2750483196, 2764518903, 2854316790, 2915768430
Offset: 1

Views

Author

Colin Barker, Apr 29 2014

Keywords

Comments

The first term having a repeated digit is a(83) = 10075823946.
Superset of A115940. - R. J. Mathar, May 02 2014

Crossrefs

Programs

  • Mathematica
    Select[Table[(n(n+1))/2,{n,45000,100000}],Min[DigitCount[#]]>0&] (* Harvey P. Dale, Jul 26 2014 *)
  • PARI
    s=[]; for(n=0, 100000, if(#vecsort(eval(Vec(Str(n*(n+1)/2))), , 8)==10, s=concat(s, n*(n+1)/2))); s
Showing 1-10 of 16 results. Next