A045920 Numbers m such that the factorizations of m..m+1 have the same number of primes (including multiplicities).
2, 9, 14, 21, 25, 27, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 121, 122, 124, 133, 135, 141, 142, 145, 147, 153, 158, 164, 170, 171, 174, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 245, 253, 284, 285, 296, 298, 301, 302, 326, 332, 334, 350, 356, 361
Offset: 1
References
- C. Clawson, Mathematical mysteries, Plenum Press 1996, p. 250.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. R. Heath-Brown, A parity problem from sieve theory, Mathematika, Vol. 29, No. 1 (1982), pp. 1-6.
- D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika, Vol. 31, No. 1 (1984), pp. 141-149.
- Adolf Hildebrand, The divisor function at consecutive integers, Pacific journal of mathematics, Vol. 129, No. 2 (1987), pp. 307-319.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a045920 n = a045920_list !! (n-1) a045920_list = map (+ 1) $ elemIndices 0 a076191_list -- Reinhard Zumkeller, Mar 23 2012, Oct 11 2011
-
Mathematica
f[n_]:=Plus@@Last/@FactorInteger[n];lst={};Do[If[f[n]==f[n+1],AppendTo[lst,n]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *) Transpose[Transpose[Select[Partition[Table[{n,PrimeOmega[n]},{n,400}], 2,1], #[[1,2]]==#[[2,2]]&]][[1]]][[1]] (* Harvey P. Dale, Feb 21 2012 *) Position[Differences[PrimeOmega[Range[400]]], 0] // Flatten (* Zak Seidov, Oct 30 2012 *)
-
PARI
is(n)=bigomega(n)==bigomega(n+1) \\ Charles R Greathouse IV, Sep 14 2015
Formula
a(n) = A278291(n) - 1. - Zak Seidov, Nov 17 2018
Extensions
More terms from David W. Wilson
Comments