A046022 Primes together with 1 and 4.
1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1
Links
- J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function
- Eric Weisstein's World of Mathematics, Sum of Prime Factors
Programs
-
Haskell
a046022 n = a046022_list !! (n-1) a046022_list = [1..4] ++ drop 2 a000040_list -- Reinhard Zumkeller, Apr 06 2014
-
Maple
A046022:=n-> `if`((-1)^n*floor(numtheory[tau](n)*(-1)^n/2) = 1, n, NULL); seq(A046022(j), j=1..260); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
max = 0; a = {}; Do[m = FactorInteger[n]; w = Sum[m[[k]][[1]]*m[[k]][[2]], {k, 1, Length[m]}]; If[w > max, AppendTo[a, w]; max = w], {n, 1, 1000}]; a (* Artur Jasinski, Apr 06 2008 *)
-
PARI
a(n)=if(n<6,n,prime(n-2)) \\ Charles R Greathouse IV, Apr 28 2015
-
Python
from sympy import prime def A046022(n): return prime(n-2) if n>4 else n # Chai Wah Wu, Oct 17 2024
Formula
A141295(a(n)) = a(n). - Reinhard Zumkeller, Jun 23 2008
A018194(a(n)) = 1. - Reinhard Zumkeller, Mar 09 2012
A240471(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2014
Extensions
Better description from Frank Ellermann, Jun 15 2001
Comments