cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A228846 Largest m such that (2k+1)*2^m + 1 is a prime factor of the Fermat number 2^(2^n) + 1.

Original entry on oeis.org

1, 2, 4, 8, 16, 7, 8, 9, 11, 16, 14, 14
Offset: 0

Views

Author

Arkadiusz Wesolowski, Sep 05 2013

Keywords

Comments

a(n) >= n + 2 for n >= 2.
a(n) = A228845(n) if 2^(2^n) + 1 is prime or semiprime.
a(n) = max (A007814(p_i-1)), where p_i are the prime factors of 2^(2^n)+1. - Ralf Stephan, Sep 09 2013
For n >= 2, a(n) >= n + 3 if A046052(n) is an odd number. - Arkadiusz Wesolowski, Aug 10 2021

Examples

			F(5) = 641*6700417 and max(A007814(640),A007814(6700416))=7, so a(5)=7.
		

Crossrefs

A229850 Number of prime factors congruent to 1 mod 3 that divide the Fermat number 2^(2^n) + 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 3, 2
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

a(n) < A046052(n) because all Fermat numbers greater than 3 are equal to 2 (mod 3).
a(n) = 1 if A046052(n) = 2.
If A046052(n) = 3, then a(n) = 0 or 2.
a(n) <= A228846(n) - n - 1 for n = 0 to 11.

References

  • M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 61-63, 65-66.

Crossrefs

A281576 Composite Fermat numbers.

Original entry on oeis.org

4294967297, 18446744073709551617, 340282366920938463463374607431768211457, 115792089237316195423570985008687907853269984665640564039457584007913129639937
Offset: 1

Views

Author

Felix Fröhlich, Jan 24 2017

Keywords

Comments

Complement of A019434 in A000215.
Intersection of A000215 and A002808.
Fermat numbers F_i such that A152155(i) != -1, where i is the index of F in A000215.
Is this sequence infinite?
All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - Amiram Eldar, Jul 24 2021

Crossrefs

Programs

  • PARI
    a152155(n) = centerlift(Mod(3, 2^(2^n)+1)^(2^(2^n-1)))
    terms(n) = my(i=0, k=1); while(1, if(a152155(k)!=-1, print1(2^(2^k)+1, ", "); i++); if(i==n, break); k++)
    terms(4) \\ print initial 4 terms

A228845 Least m such that (2k+1)*2^m + 1 is a prime factor of the Fermat number 2^(2^n) + 1.

Original entry on oeis.org

1, 2, 4, 8, 16, 7, 8, 9, 11, 11, 12, 13, 14
Offset: 0

Views

Author

Arkadiusz Wesolowski, Sep 05 2013

Keywords

Comments

a(n) >= n + 2 for n >= 2.
a(n) = A228846(n) if 2^(2^n) + 1 is prime or semiprime.

Crossrefs

A023395 Only Fermat number divisible by A023394(n) is 2^2^a(n) + 1.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 12, 6, 11, 11, 9, 5, 18, 12, 10, 12, 23, 16, 15, 10, 19, 12, 19, 13, 36, 21, 38, 32, 25, 17, 39, 6, 26, 27, 30, 30, 8, 12, 15, 29, 38, 7, 25, 27, 36, 42, 25, 13, 13, 55
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Mar 02 2021: (Start)
2^(a(n)+1) is the multiplicative order of 2 modulo A023394(n).
Each k occurs A046052(k) times in this sequence provided that F(k) = 2^2^k + 1 is squarefree (no counterexamples are known). (End)
Alternatively, a(n) is the only k such that A023394(n) divides A000215(k). - Lorenzo Sauras Altuzarra, Feb 01 2023

Crossrefs

Programs

  • PARI
    forprime(p=3,,r=znorder(Mod(2,p));hammingweight(r)==1&&print1(logint(r,2)-1,", ")) \\ Jeppe Stig Nielsen, Mar 04 2018

Extensions

a(25)-a(41) computed using data from Wilfrid Keller by T. D. Noe, Feb 01 2009
Three more terms by T. D. Noe, Feb 03 2009
Six more terms from Wilfrid Keller by T. D. Noe, Jan 14 2013

A229857 Round(2^(m-n-2)/(m*log(8))), where m = 2^n - n - 2.

Original entry on oeis.org

5043, 2417158053779, 5245728941618725066052704993134, 215872416866954281715178071724040762825421437510476267629647193878371
Offset: 5

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

a(9) has 145 digits and is too large to include.
Conjecture: a(n) < f(n) = number of primes of the form k*2^(n+2) + 1 with k odd that exist between a = 2^(n+2) + 1 and b = floor((2^(2^n) + 1)/(3*2^(n+2) + 1)).
For comparison, f(5) = 5746.
If the extended Riemann hypothesis is true, then for every fixed epsilon > 0, f(n) = Li(b)/(a - 1) + O(b^(1/2 + epsilon)), where Li(b) = integral(2..b, dt/log(t)).

References

  • P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 57-58.

Crossrefs

A063487 Number of distinct prime divisors of 2^(2^n)-1 (A051179).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 20, 25
Offset: 0

Views

Author

Jason Earls, Jul 28 2001

Keywords

Comments

2^(2^n)-1 is the product of the first n Fermat numbers F(0),...,F(n-1) (A000215). Hence this sequence is just the summation of A046052, which gives the number of prime factors in each Fermat number. - T. D. Noe, Jan 07 2003

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 238.

Crossrefs

Programs

  • PARI
    for(n=0,22,print(omega(2^(2^n)-1)))

Extensions

More terms from T. D. Noe, Jan 07 2003

A321213 a(n) is the number of divisors of n-th Fermat number (A000215).

Original entry on oeis.org

2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 16, 32
Offset: 0

Views

Author

Jinyuan Wang, Oct 31 2018

Keywords

Examples

			A000215(n) is prime for n=0 to 4, so a(n)= 2 for n=0 to 4.
		

Crossrefs

Programs

  • GAP
    List(List([0..11],n->2^(2^n)+1),i->Number(DivisorsInt(i))); # Muniru A Asiru, Nov 03 2018
  • Magma
    [DivisorSigma(0, 2^2^n + 1): n in [1..100]]
    
  • Mathematica
    Table[DivisorSigma[0, 2^2^n + 1], {n, 120}]
  • PARI
    a(n) = numdiv(2^2^n+1)
    

Formula

a(n) = A000005(A000215(n)). - Omar E. Pol, Oct 31 2018
a(n) = 2^A046052(n) for squarefree A000215(n). - Amiram Eldar, Oct 31 2018

Extensions

a(10)-a(11) from Amiram Eldar, Oct 31 2018
Showing 1-8 of 8 results.