A046097 Values of n for which binomial(2n-1, n) is squarefree.
1, 2, 3, 4, 6, 9, 10, 12, 36
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Binomial Coefficient.
- A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107.
- J. W. Sander, Prime power divisors of binomial coefficients, Journal für die reine und angewandte Mathematik 430 (1992), 1-20.
Crossrefs
Cf. A001700.
For a term to be here, it needs to be at least in the intersection of A048645, A051382, A050607, A050608 and an infinitude of similar sequences. The corresponding location in next-to-center column should be nonzero in A034931 (Pascal's triangle mod 4) and all similarly constructed fractal triangles (Pascal's triangle mod p^2).
Programs
-
Magma
[n: n in [1..150] | IsSquarefree(Binomial(2*n-1,n))]; // Vincenzo Librandi, Dec 10 2015
-
Maple
select(n -> numtheory:-issqrfree(binomial(2*n-1,n)), [$1..2000]); # Robert Israel, Dec 09 2015 N:= 300: # to find all terms <= 2^N carries:= proc(n,m,p) # number of carries when adding n + m in base p. local A,B,C,j,nc, t; A:= convert(m,base,p); B:= convert(n,base,p); C:= 0; nc:= 0; if nops(A) < nops(B) then A = [op(A),0$(nops(B)-nops(A))] elif nops(A) > nops(B) then B:= [op(B), 0$(nops(A)-nops(B))] fi; for j from 1 to nops(A) do t:= C + A[j] + B[j]; if t >= p then nc:= nc+1; C:= 1; else C:= 0 fi od: nc; end proc: Cands:= {seq(2^j,j=0..N), seq(seq(2^j + 2^k, k=0..j-1),j=1..N-1)}: for i from 2 to 10 do Cands:= select(n -> carries(n-1,n,ithprime(i)) <= 1, Cands) od: select(n -> numtheory:-issqrfree(binomial(2*n-1,n)),Cands); # Robert Israel, Dec 10 2015
-
Mathematica
Select[ Range[1500], SquareFreeQ[ Binomial[ 2#-1, #]] &] (* Jean-François Alcover, Oct 25 2012 *)
-
PARI
is(n)=issquarefree(binomial(2*n-1,n)) \\ Anders Hellström, Dec 09 2015
Extensions
James Sellers reports no further terms below 1500.
Michael Somos checked to 99999. Probably there are no more terms.
Mauro Fiorentini checked up to 2^64, as for n = 545259520, the binomial coefficient is a multiple of 5^4 and other possible exceptions have been checked (see Weisstein page for details).
Comments