cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046173 Indices of square numbers that are also pentagonal.

Original entry on oeis.org

1, 99, 9701, 950599, 93149001, 9127651499, 894416697901, 87643708742799, 8588189040096401, 841554882220704499, 82463790268588944501, 8080609891439495856599, 791817305570802005002201, 77590015336047156994359099, 7603029685627050583442189501
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20 * sqrt(6). - Ant King, Nov 07 2011
a(n)^2 is of the form (2*m-1)*(3*m-2), and the corresponding values of m are 1, 41, 3961, 388081, 38027921, 3726348121, 365144087881, ..., with closed form ((5-2*sqrt(6))^(2n-1)+(5+2*sqrt(6))^(2n-1)+14)/24 (for n>0). - Bruno Berselli, Dec 12 2013
The terms of this sequence satisfy the Diophantine equation m^2 = k * (3k-1)/2, which is equivalent to (6k-1)^2 - 6*(2*m)^2 = 1. Now, with x=6k-1 and y=2*m, we get the Pell-Fermat equation x^2 - 6*y^2 = 1. The solutions (x,y) of this equation are respectively in A046174 and A046175. The indices m=y/2 of the square numbers which are also pentagonal are the terms of this sequence, the indices k=(x+1)/6 of the pentagonal numbers which are also square are in A046172, and the pentagonal square numbers are in A036353. - Bernard Schott, Mar 10 2019
Also, this sequence is related to A302330 by (sqrt(2) + sqrt(3))^(4*n-2) = A302330(n-1)*5 + a(n)*sqrt(24). - Bruno Berselli, Oct 29 2019

Examples

			G.f. = x + 99*x^2 + 9701*x^3 + 950599*x^4 + 93149001*x^5 + ...
99 is a term because 99^2 = 9801 = (1/2) * 81 * (3*81 - 1), so 9801 is the 99th square number, also the 81st pentagonal number, and the second pentagonal square number after 1. - _Bernard Schott_, Mar 10 2019
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 35.

Crossrefs

Cf. A036353 (pentagonal square numbers), A046172 (indices of pentagonal numbers that are also square).
Cf. A046174, A046175 (solutions of x^2 - 6*y^2 = 1).
Cf. A302330.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 98* x + x^2), {x, 0, 30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{98, -1}, {1, 99}, 30] (* Harvey P. Dale, Jul 31 2017 *)
  • PARI
    {a(n) = subst( poltchebi(n) - poltchebi(n-1), 'x, 49) / 48}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    Vec(x*(x+1)/(x^2-98*x+1) + O(x^30)) \\ Colin Barker, Jun 23 2015

Formula

a(n) = 98*a(n-1) - a(n-2); g.f.: (1+x)/(1-98*x+x^2). - Warut Roonguthai, Jan 05 2001
a(1-n) = -a(n) for all n in Z. - Michael Somos, Sep 05 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(f(a(n-1),5),5). - Marcos Carreira, Dec 27 2006
a(n) = ((12+5*sqrt(6))/24)*(5+2*sqrt(6))^(2*n)+((12-5*sqrt(6))/24)*(5-2*sqrt(6))^(2*n) for n>=0. - Richard Choulet, Apr 29 2009
a(n+1) = 49*a(n) + 10*sqrt(24*a(n)^2+1) for n > =0 with a(0)=1. - Richard Choulet, Apr 29 2009
a(n) = b such that (-1)^n*Integral_{x=-Pi/2..Pi/2} (cos(2*n-1)*x)/(5-sin(x)) dx = c + b*(log(2)-log(3)). - Francesco Daddi, Aug 01 2011
a(n) = floor((1/24) * sqrt(6) * (sqrt(2) + sqrt(3))^(4n-2)). - Ant King, Nov 07 2011
a(n) = A138288(n)*A054320(n). - Gerry Martens, May 13 2024