cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046176 Indices of square numbers that are also hexagonal.

Original entry on oeis.org

1, 35, 1189, 40391, 1372105, 46611179, 1583407981, 53789260175, 1827251437969, 62072759630771, 2108646576008245, 71631910824649559, 2433376321462076761, 82663163018885960315, 2808114166320660573949
Offset: 1

Views

Author

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
(3*b(n))^2 - 2*(2*a(n+1))^2 = 1 with companion sequence b(n) = A077420(n), n >= 0.
Sequence also refers to inradius of primitive Pythagorean triangles with consecutive legs, odd followed by even. - Lekraj Beedassy, Apr 23 2003
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> oo} a(n)/a(n-1) = (1 + sqrt(2))^4 = 17 + 12*sqrt(2). - Ant King, Nov 08 2011
Integers of the form sqrt((m+1)*(2*m+1)). The corresponding values of m form A078522. Subsequence of A284876. - Jonathan Sondow, Apr 07 2017

References

  • M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.

Crossrefs

Cf. A001109, A001110 (partial sums).

Programs

  • GAP
    List([0..20], n-> Lucas(2,-1, 4*n-2)[1]/2 ); # G. C. Greubel, Jan 13 2020
  • Magma
    I:=[1,35]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    seq( simplify(ChebyshevU(2*(n-1), 3)), n = 1..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    LinearRecurrence[{34, -1}, {1, 35}, 15] (* Ant King, Nov 08 2011 *)
    Fibonacci[4*Range[20] -2, 2]/2 (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    vector(21, n, polchebyshev(2*(n-1), 2, 3) ) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    [lucas_number1(4*n-2, 2,-1)/2 for n in (1..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = 34*a(n-1) - a(n-2); a(0)=-1, a(1)=1.
a(n+1) = S(2*n, 6) = S(n, 34) + S(n-1, 34), n >= 1, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(n, 34) = A029547(n).
G.f.: x*(1+x)/(1-34*x+x^2).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*6^(2*(n-k)), n >= 0.
a(n) = A001109(2n+1). - Lekraj Beedassy, Apr 23 2003
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(f(a(n-1),3),3). - Marcos Carreira, Dec 27 2006
From Antonio Alberto Olivares, Mar 22 2008: (Start)
a(n) = (sqrt(2)/8)*(3 + 2*sqrt(2))*(17 + 12*sqrt(2))^(n-1) - (sqrt(2)/8)*(3 - 2*sqrt(2))*(17 - 12*sqrt(2))^(n-1).
a(n) = (sqrt(2)/8)*( (17+12*sqrt(2))^(n-1/2) - (17-12*sqrt(2))^(n-1/2) ).
a(n) = (sqrt(2)/8)*( (3+2*sqrt(2))^(2n-1) - (3-2*sqrt(2))^(2n-1) ).
a(n) = (sqrt(2)/8)*( (1+sqrt(2))^(4n-2) - (1-sqrt(2))^(4n-2) ).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). (End)
a(n+1) = 17*a(n) + 6*sqrt(8*a(n)^2+1) for n >= 0. - Richard Choulet, May 01 2009
a(n) = b such that (-1)^(n+1) * Integral_{x=-Pi/2..Pi/2} cos((2*n-1)*x)/(3-sin(x)) dx = c + b*log(2). - Francesco Daddi, Aug 01 2011
a(n) are the nonzero integer square roots of A227970. - Richard R. Forberg, Aug 01 2013
a(n) = y/5, where y are solutions to: y^2 = 2x^2 - x - 3. - Richard R. Forberg, Nov 24 2013
a(n) = sqrt((A078522(n)+1)*(2*A078522(n)+1)). - Jonathan Sondow, Apr 07 2017
a(n) = Pell(4*n-2)/2. - G. C. Greubel, Jan 13 2020
a(n) = A001653(n)*A002315(n). - Gerry Martens, Mar 23 2024

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 29 2002